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1 Introduction

This specification presents the MQOM (MQ-On-my-Mind) digital signature scheme. This
scheme has been designed by applying the “Multiparty Computation in the Head” (MPC-
in-the-Head, or MPCitH) paradigm to the Multivariate Quadratic (MQ) problem. The MPC-
in-the-Head paradigm was introduced in [IKO+07] and recently gained popularity, notably
following the Picnic signature scheme proposal to the previous NIST call for post-quantum al-
gorithms [picnic]. We design a specific MPC protocol to verify the solution of an MQ instance
which is well suited for application of the MPCitH paradigm. The MQOM MPC protocol is
obtained by improving previous techniques from [Fen22; BDK+21; DOT21]. We further use
generic techniques to improve the MPCitH transform, namely seed trees [KKW18] and hyper-
cube party computation [AGH+23].

Organization of the document. Section 2 gives a high-level description of MQOM MPC pro-
tocol and signature scheme. Section 3 provides a detailed description of the key generation,
signature and verification algorithms and their underlying subroutines. In Section 4, we explain
how we chose the parameters, we explicit our proposed instances and their achieved perfor-
mances. Section 5 provides a security analysis of the MQOM signature scheme. Finally, we
conclude by listing some advantages and limitations of MQOM in Section 6.
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2 High-level description of the MQOM signature scheme

2.1 Notations

Table 1: Notations and parameters of the MQOM scheme.

MQ parameters:

q Size of the base field Fq.
n Number of unknowns.

m Number of equations.

MPC & signature parameters:

λ Security parameter.

N Number of parties (number of shares).

n1 Number of coordinates per chunks of x and w.

n2 Number of chunks in x and w.

η Extension degree for the field Fqη used in the MPC protocol.

τ Number of repetitions.

MQ instance:

{Ai, bi} Equations of the MQ instance.

x Secret MQ solution (in Fnq ).

y Output of the MQ instance (in Fmq ): yi = x⊺Aix+ b⊺i x ∀i ∈ [1 : m].

MPC protocol:

J·K = (J·K1, . . . , J·KN ) Sharing.

γ1, . . . , γm Random coefficients of Fqη (first challenge).

r Random evaluation point of Fqη \ {f1, . . . , fn1} (second challenge).

w Vector defined as w :=
(∑m

i=1 γiAi
)
x (in Fnqη).

z Value defined as z :=
∑m

i=1 γi(yi − b
⊺
i x) (in Fqη).

f1, . . . , fn1 Elements of Fqη for interpolation of the polynomials.

X = (X1, . . . , Xn2) Polynomials interpolated from the chunks of x.

W = (W1, . . . ,Wn2) Polynomials interpolated from the chunks of w.

a = (a1, . . . , an2) Random coefficients from the hint (in Fqη).

V Vanishing polynomial: V (u) =
∏n1
i=1(u− fi).

W̃ = (W1, . . . ,Wn2) Masked polynomials: W̃j(u) = Wj(u) + aj · V (u) ∀j ∈ [1 : n2]

α = (α1, . . . , αn2) Evaluations of W̃ in r: αj = W̃j(r) ∀j ∈ [1 : n2]

Q(u) Hint polynomial: Q(u) =
∑n2

j=1Xj(u) · W̃j(u)

Q′(u) Truncated hint polynomial: Q(u) = u ·Q′(u) + q0

p = p1 + (1− p1) · p2 False positive probability.

MPCitH & signature:

D The dimension of the hypercube (N = 2D).

I(d,b) Set of parties on a hypercube face.

i∗ Index of the non-opened party.

h1, h2, h3 Fiat-Shamir hashes.

seedeq Seed for the generation of the MQ equations {Ai, bi} (in {0, 1}λ).

salt Salt used as auxiliary input of XOF, Hash and Commit (in {0, 1}2λ).

mseed Master seed of the signature (in {0, 1}λ).

rseed[e] Root seed for execution e (in {0, 1}λ).

seed
[e]
i Leaf seed for party i in execution e (in {0, 1}λ).

com
[e]
i Commitment of party i in execution e (in {0, 1}2λ).
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2.2 The Multivariate Quadratic (MQ) problem

We recall the definition of the MQ problem (in matrix form) which is the core hardness assump-
tion of the MQOM signature scheme.

Definition 1 (Multivariate Quadratic Problem). Let q be a prime (or a prime power) and let
m,n be positive integers. The multivariate quadratic problem with parameters (q,m, n) is the
following problem:

Let (Ai)i∈[m], (bi)i∈[m], x and y be such that:

1. x is uniformly sampled from Fnq ,
2. for all i ∈ [m], Ai is uniformly sampled from Fn×nq ,

3. for all i ∈ [m], bi is uniformly sampled from Fnq ,
4. for all i ∈ [m], yi is defined as yi := x⊺Aix+ b⊺i x.

From
(
{Ai}, {bi}, y

)
, find x.

2.3 The MQOM MPC protocol

In this section, we describe the MQOM MPC protocol which is at the core of the MQOM
signature scheme. The MQOM MPC protocol runs a multi-party computation which verifies
the correctness of a solution x to a public MQ instance

(
{Ai}, {bi}, y

)
. The secret solution x is

shared between N parties which, after running the protocol, either output Accept if the input
sharing is believed to encode a correct MQ solution or Reject otherwise.

2.3.1 MPC model

The MQOM protocol relies on a standard model of the MPCitH paradigm as formalized e.g.
in [FR22, Section 3.1]. In this model, the parties receive as input a sharing

JxK = (JxK1, . . . , JxKN )

of the secret witness x. Then, they perform a sequence of the following actions:

1. Invoke a randomness oracle OR. This oracle sends a random value γ to all the parties. In
MPCitH context, these random values are provided by the verifier as challenges.

2. Invoke a hint oracleOH . For some function ψ, the hint is sampled as β ← ψ(x, γ1, γ2, . . . ; rψ)
where γ1, γ2, . . . are the previous outputs of OR and where rψ is some fresh randomness.
The hint oracle sends a random sharing JβK of the hint to the parties. In the MPCitH
context, the hint is computed by the prover and the obtained shares are committed with
the shares of the witness.

3. Compute and broadcast shares. The parties locally compute JαK := Jφ(v)K from a sharing
JvK for some is an Fq-linear function φ. Then they broadcast the shares JαK1, . . . , JαKN and
publicly reconstruct α = φ(v). This local computation process is denoted Jφ(v)K = φ(JvK).
The function φ can depend on the previous random values from OR and on the previous
broadcasted values from OH .
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After a given number of rounds, the parties broadcast a final sharing JvK and publicly recom-
pute v. If v = 0, they output Accept, if v ̸= 0, they output Reject.

The protocol is said perfectly complete, if on input a sharing JxK of the right MQ solution, the
parties always output Accept. On the other hand, the protocol has false positive probability
p, if the probability that the parties output Accept on input JxK corresponding to an incorrect
MQ solution is at most p. The MQOM protocol is perfectly complete and has false positive
probability which we exhibit in Section 2.3.4.

2.3.2 Principle of the MPC protocol

The parties aim to verify that their input sharing JxK corresponds to a solution x ∈ Fnq of the
following system: 

y1 = x⊺A1x+ b⊺1x
...

ym = x⊺Amx+ b⊺mx

for a given MQ instance
(
{Ai}, {bi}, y

)
.

As a first step of the MQOM protocol, we batch the equations of the MQ system as sug-
gested in [Fen22]. Instead of checking the m equations separately, the parties verify a linear
combination of these equations with coefficients γ1, . . . , γm that are uniformly sampled by the
randomness oracle OR from a field extension Fqη . The MPC protocol shall then check that

m∑
i=1

γi(yi − x⊺Aix− b⊺i x) = 0. (1)

If one of the equations of the MQ system is not satisfied, then Equation 1 is only satisfied with
a probability 1/qη. Then, the above equality rewrites as

m∑
i=1

γi(yi − b⊺i x) =
m∑
i=1

γi(x
⊺Aix)

= x⊺
( m∑
i=1

γiAi

)
x

= ⟨x,w⟩ where w :=
( m∑
i=1

γiAi

)
x

By defining z :=
∑m

i=1 γi(yi − b
⊺
i x) and w := (

∑m
i=1 γiAi)x, checking Equation 1 is equivalent

to checking z = ⟨x,w⟩. On receiving the random coefficients γ1, . . . , γm the parties can locally
compute a sharing JwK of w from the sharing JxK.

As a second step of the MQOM protocol, the parties verify the inner product z = ⟨x,w⟩ for
some public z from the sharings and JxK and JwK. For this purpose, we introduce an inner-
product verification protocol, using polynomial interpolation techniques as Banquet [BDK+21]
or Limbo [DOT21] with a slightly improved communication.

The principle is to split the vectors x and z into n2 chunks of n1 coordinates for integers n1, n2
such that n1 ·n2 ≥ n. The chunks are used to interpolate polynomials X1(u), . . . , Xn2(u) ∈ Fq[u]
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and W1(u), . . . ,Wn2(u) ∈ Fqη [u], which satisfy
Xj(f1) = x(j−1)n1+1

...

Xj(fn1) = x(j−1)n1+n1

and


Wj(f1) = w(j−1)n1+1

...

Wj(fn1) = w(j−1)n1+n1

(2)

for every j ∈ [1 : n2] where f1, . . . , fn1 are n1 fixed distinct elements from Fq. Let us stress that
the Xj ’s are polynomials of degree deg(Xj) ≤ n1−1 from Fq[u] while the Wj ’s are polynomials of
degree deg(Wj) ≤ n1− 1 from Fqη [u]. By definition of those polynomials, we have the following
equivalence

z = ⟨x,w⟩ ⇐⇒ z =

n1∑
i=1

n2∑
j=1

Xj(fi) ·Wj(fi)

Defining the polynomial Q0(u) ∈ Fqη [u] as

Q0(u) :=

n2∑
j=1

Xj(u) ·Wj(u) (3)

we now have z = ⟨x,w⟩ if and only if z =
∑n1

i=1Q0(fi).

In a nutshell, the MQOM MPC protocol works as follows:

– The parties locally computes sharings JXjK and JWjK by interpolation from JxK and JwK
(which is possible since such interpolation is Fq-linear);

– The parties invoke the hint oracle to obtain a sharing JQ0K of the polynomial Q0;

– At this stage, the parties aim to check that the two following holds:

(1) the polynomial Q0 from the hint oracle well satisfies Equation 3,

(2) the polynomial Q0 from the hint oracle well satisfies z =
∑n1

i=1Q0(fi).

– To verify relation (1), the protocol relies on the Schwartz–Zippel lemma. Namely, Equa-
tion 3 is verified on a random evaluation point r ∈ Fqη \{f1, . . . , fn1}. The parties proceed
as follows:

1. they request a random evaluation point r ∈ Fqη \ {f1, . . . , fn1} from the randomness
oracle OR;

2. they locally compute JαjK = JWjK(r) for all j ∈ [1 : n2];

3. they broadcast JαjK and publicly recompute αj for all j ∈ [1 : n2];

4. they locally compute Jv1K = JQ0K(r)−
∑n2

j=1 αj · JXjK(r);

5. they broadcast Jv1K and publicly recompute v1 = Q0(r)−
∑n2

j=1 αj ·Xj(r);

6. they verify that v1 = 0.

– To verify relation (2), the parties proceed as follows:

1. they locally compute Jv2K = JzK−
∑n1

i=1JQ0K(fi);

2. they broadcast Jv2K and publicly recompute v2 = z −
∑n1

i=1Q0(fi);

3. they verify that v2 = 0.
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Making the protocol private. The careful reader might have noticed a caveat in the above
protocol: the broadcast shares leak information on the secret witness. Specifically, the publicly
recomputed values αj are evaluations of the polynomials Wj(u) in a public point r which provide
linear combinations of the vector w, namely linear combinations of the secret x. In order to
ensure the zero-knowledge property when applying the MPCitH transformation, we should make
the protocol (N − 1)-private. Namely, one should not learn any information about x from any
N − 1 parties’ views, including all the broadcast shares.

To deal with this issue we use a standard solution which consists in masking the polynomials
Wj ’s as

W̃j(u) := Wj(u) + aj · V (u)

where the aj ’s are random elements of Fqη obtained from the hint oracle OH and where V (u)
is the vanishing polynomial of the interpolation set {f1, . . . , fn1}, which is defined as

V (u) := (u− f1)(u− f2) · · · (u− fn1) .

The polynomial Q0 is then replaced by the polynomial Q defined as

Q(u) :=

n2∑
j=1

Xj(u) · W̃j(u) (4)

which –by definition of the vanishing polynomial– still satisfies the relation

z = ⟨x,w⟩ ⇐⇒ z =

n1∑
i=1

Q(fi) . (5)

The protocol works the same way as before with Q in place of Q0 but now the revealed eval-
uations W̃1(r), . . . , W̃n1(r) do not leak any information about the secret witness. Indeed,
W̃j(r) = Wj(r) + aj · V (r) with V (r) ̸= 0 since r /∈ {f1, . . . , fn1} and aj uniformly random over
Fqη .

Dealing with incomplete last chunk. In practice, the optimal parameters n1, n2 in terms of
communication of the MPCitH-transformed protocol might be such that n1 ·n2 is strictly greater
than n. In that case, the last of the n2 chunks of x and w are of size smaller than n1. Let
n′1 < n1, the size of the last chunks, such that n = (n2− 1)n1 +n′1. The last chunk polynomials
Xn2 and Wn2 are defined as the polynomials of degrees deg(Xn2) ≤ n1 and deg(Wn2) ≤ n′1
respectively satisfying:

Xn2(f1) = x(n2−1)n1+1
...

Xn2(fn′
1
) = x(n2−1)n1+n′

1

Xn2(fn′
1+1) = 0

...

Xn2(fn1) = 0

and


Wn2(f1) = w(n2−1)n1+1

...

Wn2(fn′
1
) = w(n2−1)n1+n′

1

(6)

This way, whatever the values taken by Wn2(fi), we always have Xn2(fi) · W̃n2(fi) = 0 for
i ∈ [n′1 + 1 : n1] so that Equation 5 still holds true.
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Optimizing the communication. The MPC protocol as depicted above consists in checking
that the publicly reconstructed values v1 and v2 satisfy v1 = v2 = 0, which is{

Q(r)−
∑n2

j=1 αj ·Xj(r) = 0

z −
∑n1

i=1Q(fi) = 0
(7)

By denoting q0 the constant term of Q(u) and letting Q′(u) the degree-(n1−2) polynomial such
that

Q(u) = u ·Q′(u) + q0 , (8)

the above system is equivalent to (swapping the two equations):{
q0 = (n1)

−1
(
z −

∑n1
i=1 fi ·Q′(fi)

)
v := r ·Q′(r) + q0 −

∑n2
j=1 αj ·Xj(r) = 0

(9)

(assuming that n1 is co-prime with q, the base field characteristic, which shall always be the
case in our context). So rather than requesting a hint JQK and broadcasting the shares of v1
and v2, the parties can instead request a hint JQ′K and check the two equations simultaneously
by

– locally computing the sharing Jq0K as

Jq0K = (n1)
−1
(
z −

n1∑
i=1

fi · JQ′K(fi)
)

– locally computing the sharing JvK as

JvK = r · JQ′K(r) + Jq0K−
n2∑
j=1

αj · JXjK(r)

– broadcasting JvK, publicly recomputing v and checking v = 0.

This way, the hint (Q′ vs. Q) is shorter by one Fqη element (which accounts in the ZK proto-
col’s communication) and the broadcast is reduced by replacing (Jv1K, Jv2K) by JvK (which also
accounts as one Fqη element in the ZK protocol).

2.3.3 Description of the MPC protocol

Wrapping up the different tweaks described above, we obtain the MQOM MPC protocol which
is formally depicted in Figure 1.
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Input: The parties receive a sharing JxK of a solution x to an MQ instance
(
{Ai}, {bi}, y

)
.

1. The parties invoke the randomness oracle OR to get random γ1, . . . , γm ∈ Fqη .

2. The parties locally compute JzK =
∑m

i=1 γi(yi − b
⊺
i JxK).

3. The parties locally compute JwK = (
∑m

i=1 γiAi) JxK.

4. The parties locally interpolate the chunk polynomials JXjK, JWjK, for j ∈ [1 : n2], as
defined in Equation 2 and Equation 6 (for the last chunk).

5. The parties locally compute JW̃jK(u) = JWjK(u)+ JajK ·V (u) where V (u) is the vanishing
polynomial over {f1, . . . , fn1} defined as V (u) :=

∏n1
i=1(u− fi).

6. The parties invoke the hint oracle OH to get sharings Ja1K, . . . , Jan1K and JQ′K, for
random a1, . . . , an1 ∈ Fqη and Q′ satisfying

u ·Q′(u) + q0 :=

n2∑
j=1

W̃j(u) ·Xj(u)

for some q0 ∈ Fqη and with W̃j(u) = Wj(u) + aj · V (u) for every j ∈ [1 : n2].

7. The parties locally compute Jq0K = (n1)
−1
(
z −

∑n1
i=1 fi · JQ′K(fi)

)
.

8. The parties invoke the randomness oracle OR to get a random r ∈ Fqη\{0, . . . , n1 − 1}.

9. The parties locally compute JαjK = JW̃jK(r) for all j ∈ [1 : n2].

10. The parties broadcast JαjK and publicly recompute αj ∈ Fqη for all j ∈ [1 : n2].

11. The parties locally compute JvK = r · JQ′K(r) + Jq0K−
∑n2

j=1 αj · JXjK(r).

12. The parties broadcast JvK and publicly recompute v.

13. The parties outputs Accept if v = 0 and Reject otherwise.

Figure 1: The MQOM MPC protocol.
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2.3.4 False positive probability

Theorem 2.1. If x is the right solution to the MQ instance
(
{Ai}, {bi}, y

)
and if JQ′K is a

genuinely generated as a sharing of Q′ by the hint oracle OH , then the protocol always outputs
Accept. If x does not satisfy the MQ instance, then whatever the hint returned by OH , the
protocol outputs Accept with probability at most p1 + (1− p1) · p2 with

p1 :=
1

qη
and p2 :=

2n1 − 1

qη − n1
.

Proof. The completeness of the protocol holds following the presentation of Section 2.3.2. Now,
let us assume that x is not a solution of the MQ instance

(
{Ai}, {bi}, y

)
. There are two cases:

1. Either ⟨w, x⟩ = z, this case occurs with probability p1 = 1
qη over the randomness of (γj)j ;

2. Or, ⟨w, x⟩ ≠ z. Let us define the polynomial P of degree deg(P ) ≤ 2n1 − 1 defined w.r.t.
Q′, X, W and z as:

P (u) := u ·Q′(u) + q0 −
n2∑
j=1

Wj(u) ·Xj(u).

with q0 := (n1)
−1
(
z −

∑n1
i=1 fi ·Q′(fi)

)
.

We have

n1∑
i=1

P (fi) =

n1∑
i=1

fi ·Q′(fi) + (n1 · q0)−
n2∑
j=1

n1∑
i=1

Wj(fi) ·Xj(fi)

=

n1∑
i=1

fi ·Q′(fi) +

(
z −

n1∑
i=1

fi ·Q′(fi)

)
−

n2∑
j=1

n1∑
i=1

Wj(fi) ·Xj(fi)

(by definition of q0)

=

n1∑
i=1

fi ·Q′(fi) +

(
z −

n1∑
i=1

fi ·Q′(fi)

)
− ⟨w, x⟩

(by definition of X and W )

= z − ⟨w, x⟩.

Since ⟨w, x⟩ ≠ z, we have that
∑n1

i=1 P (fi) ̸= 0 which implies that P is not the null
polynomial. Then, according to the Schwartz-Zippel Lemma, the probability that v :=
P (r) is zero is at most p2 = 2n1−1

qη−n1
.

To sum up, we get

Pr[Accept] ≤ Pr[⟨w, x⟩ = z] + Pr[⟨w, x⟩ ≠ z] · Pr[Accept | ⟨w, x⟩ ≠ z]

= p1 + (1− p1) · p2
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2.4 The MQOM signature scheme

2.4.1 From MPC to signature

To obtain the MQOM signature scheme, we first apply the MPCitH transform to the MQOM
MPC protocol. We use seed trees to optimize the communication [KKW18] and the hypercube
technique to optimize the computation [AGH+23]. This gives us a zero-knowledge (ZK) proof
of knowledge (PoK) protocol with soundness error about 1/N for N being the number of parties
(which is slightly degraded by the false positive probability p of the MPC protocol). To make the
soundness error negligible, we rely on parallel repetitions of this protocol. Finally, to turn the
obtained sound ZK-PoK protocol into a signature scheme, we use the Fiat-Shamir transform.
Those different steps are summarized hereafter.

The MPCitH transform. The MPC-in-the-Head paradigm turns the MQOM MPC protocol
into a ZK-PoK with the following blueprint:

1. Sharing and commitments: the prover generates a sharing of the witness JxK and separately
commits to each share;

2. First challenge: the verifier challenges the prover with the random coefficients γ1, . . . , γm
of the MPC protocol (in place of the randomness oracle OR);

3. Hint and commitments: the prover computes the hint (a1, . . . , an2 , Q
′) as described in

Section 2.3, generates a sharing of the hint (Ja1K, . . . , Jan2K, JQ′K) and commits to each
share separately (i.e. the i-th shares J·Ki of the different elements are committed all
together while the shares of different indices are committed separately);

4. Second challenge: the verifier challenges the prover with the random verification point r
of the MPC protocol (in place of the randomness oracle OR);

5. MPC simulation: the prover runs the MPC protocol in their head to compute the shares
broadcasted by the parties, Jα1K, . . . , Jαn2K, JvK, and send them to the verifier;

6. Third challenge: the verifier challenges the prover to open the views of the parties of
indices [1 : N ] \ {i∗};

7. Views opening: the prover returns the shares JxKi, Ja1Ki, . . . , Jan2Ki, JQ′Ki for every
i ∈ [1 : N ] \ {i∗};

NB: The above shares are called the input shares (witness share and hint shares) of the
party i. From the input shares of the party i, and given the previously received broadcast
shares, the verifier can now fully recompute the view of party i, for every i ∈ [1 : N ]\{i∗}.

8. Verification: the verifier checks the consistency of the commitments and the MPC com-
putation for the revealed parties. Namely they:

– verify the commitments of the opened witness shares,

– verify the commitments of the opened hint shares,

– recompute the broadcast shares for each party i ∈ [1 : N ] \ {i∗} and verify that they
match the received broadcast shares from the prover,

– verify that the plain broadcast value v equals 0.
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MPCitH optimization: Seed tree. As suggested in [KKW18], we use a seed tree (a.k.a. a
puncturable PRF) to generate and commit the shares. The principle is to derive the input
shares (witness and hint shares) of each party i pseudorandomly from a random seed seedi,
with the following pattern:

seed1 −→ JxK1, JaK1, JQ′K1
...

...
...

...

seedN−1 −→ JxKN−1, JaKN−1, JQ′KN−1

seedN −→ JaKN

where JaKi = (Ja1Ki, . . . , Jan2Ki).
For the last party, only the share JaKN can be derived from the seed seedN . This is because

a =
∑N

i=1JaKi is uniformly distributed. The shares JxKN and JQ′KN are then computed as

JxKN = x−
N−1∑
i=1

JxKi and JQ′KN = Q′ −
N−1∑
i=1

JQ′Ki .

These shares are called the auxiliary values of the input sharings. In this paradigm, opening
the input shares of the parties in the set [1 : N ] \ {i∗} simply consists in revealing the seeds
{seedi}i∈[1:N ]\{i∗} and the auxiliary values (JxKN , JQ′KN ) if i∗ ̸= N .

To further enable a compact opening of N − 1 seeds out of N , we rely on a tree PRG (a.k.a.
seed tree). The N seeds are generated from a common root seed rseed by

{seedi}i∈[1:N ] ← TreePRG(rseed) .

The principle is to label the root of a binary tree of depth ⌈log2N⌉ with rseed = seed
(0)
1 . Then,

one inductively labels the children of each level-ℓ node with the output of a standard PRG
applied to the node’s label:(

seed
(ℓ+1)
2i−1 ∥ seed

(ℓ+1)
2i

)
← PRG

(
seed

(ℓ)
i

)
where the level ℓ = 0 corresponds to the root and the level ℓ = logN corresponds to the leaves,
the N seeds seed1, . . . , seedN that are used for the shares. To reveal all the seeds but seedi∗ ,
one can reveal the sibling labels of the path from the root rseed to the leaf seedi∗ , which we
denote:

pathi∗ ← GetSiblingPath(rseed, i∗) .

For λ-bit seeds, pathi∗ is composed of log2N labels of λ bits (assuming N is a power of 2).
This means that the seeds {seedi}i∈[1:N ]\{i∗} can be opened by sending λ · log2N bits instead of
λ(N − 1) bits. The GetSiblingPath routine is detailed in Section 3.2.4.

Using the seed tree optimization the commitments of the shares are done as follows:

– In Step 1 (Sharing and commitments), the tree PRG is used the generate the seeds seed1,
. . . , seedN . The shares are committed by sending comi = Commit(seedi) for every i ∈ [1 :
N − 1] and comN = Commit(seedN ∥ JxKN ) to the verifier.

– In Step 3 (Hint and commitments), the prover has received the coefficients γ1, . . . , γm and
is now able to compute Q′. All the shares JQ′K1, . . . , JQ′KN−1 (which are derived from
the seeds) are already committed and the prover only has to compute JQ′KN and commit
it by sending com′

N = Commit(JQ′KN ) to the verifier.
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MPCitH optimization: Hypercube party computation. We use the hypercube optimization
from [AGH+23] to reduce the number of party computations performed in Step 5 (MPC simu-
lation) of the above MPCitH transform, from N down to logN + 1.

The principle is to exploit the linearity of the MPC computation to batch it into group
of parties. Denoting JinKi the input share (witness and hint share) of party i, it computes
a broadcast share JbroadKi = φ(JinKi) = Jφ(in)Ki. We then have that for any set of parties
I ⊆ [1 : N ], we can perform one party computation on

∑
i∈IJinKi to get the sum of broadcast

shares
∑

i∈IJbroadKi. Now let consider a partition I(0) ∪ I(1) = [1 : N ] of the parties. With
two batched computations we get two sums of broadcast shares, which sum up to the plain
broadcast value ∑

i∈I(0)

JbroadKi +
∑
i∈I(1)

JbroadKi = broad . (10)

Assume the prover solely sends those two sums of broadcast shares, for some sets |I(0)| =
|I(1)| = N/2, instead of the N broadcast shares. In case of cheating (i.e. at least one party
broadcast is inconsistent), the malicious prover is discovered whenever the cheating party is not
in the same set as i∗ (the non-opened party), which happens with probability 1/2. Repeating
this with another partition I ′(0) ∪ I ′(1) = [1 : N ], one can obtain a soundness error of 1

2 ×
1
2

provided that I(b)∩ I ′(b′) = N/4 for every b, b′ ∈ {0, 1}. Repeating this logN times, we obtain
the hypercube optimization.

To get a working sequence of D = logN partitions, one can see each party as a vertex
i ≡ (i1, . . . , iD) in a hypercube of dimension D (where (i1, . . . , iD) is the binary representation
of i). Let us define, for every d ∈ [1 : D] and b ∈ {0, 1},

I(d, b) =
{
i ≡ (i1, . . . , id−1, b, id+1, . . . , iD) | i1, . . . , iD ∈ {0, 1}

}
. (11)

Each pair (I(d, 0), I(d, 1)) is a partition of the vertices as belonging to two opposite faces of the
hypercube. During Step 5 (MPC simulation) of the above MPCitH transform, the prover shall
only compute and send:

– the sum of broadcast shares
∑

i∈I(d,0)JbroadKi for every d ∈ [1 : D],

– the plain broadcast value broad.

This way the prover only performs D + 1 = logN + 1 party computations (one of them being
computed on the plain values).

Then in Step 8 (Verification) of the MPCitH transform, the verifier checks the consistency
of the broadcast shares for every d ∈ [1 : D] as follows:

– If i∗ ∈ I(d, 1), the verifier knows all the input shares JinKi for i ∈ I(d, 0). They recompute
the sum

∑
i∈I(d,0)JbroadKi by applying the party computation to

∑
i∈I(d,0)JinKi, and check

its consistency to the sum previously sent by the prover.

– If i∗ ∈ I(d, 0), the verifier knows all the input shares JinKi for i ∈ I(d, 1). They first
recompute the sum

∑
i∈I(d,1)JbroadKi by applying the party computation to

∑
i∈I(d,1)JinKi

and then recover
∑

i∈I(d,0)JbroadKi using Equation 10 (since they further received the plain
broadcast broad from the prover).

This way the verifier only performs D = logN party computations.
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Parallel repetition. After applying the MPCitH transform to the MQOM MPC protocol we
obtain a ZK-PoK for the MQ problem with soundness error

ε =
1

N
+ p
(
1− 1

N

)
where p = p1 + (1− p1) · p2 is the false positive probability given by Theorem 2.1.

In order to scale this to 2−λ for a target security level λ, we use parallel repetition. This
means that the ZK-PoK is repeated τ times in parallel to reach a global soundness error of ετ .
We stress that a soundness error of ετ does not imply an unforgeability of ετ once the scheme is
made non-interactive using the Fiat-Shamir transform. While fixing the number of repetitions
τ to achieve some level of security in the non-interactive setting, one needs to take into account
possible forgery attacks such as the one described in Section 5.3.

The Fiat-Shamir transform. The Fiat-Shamir heuristic turns the latter ZK-PoK into the
MQOM signature scheme. The principle is to replace the verifier challenge of the ZK-PoK by
the outputs of hash functions taking previous prover’s communication as input.

Specifically:

1. A first hash h1 is derived by hashing the share commitments of Step 1 (over all the τ
repetitions). This hash is then pseudorandomly expanded into the challenge of Step 2
(different coefficients γ1, . . . , γm for the τ repetitions).

2. A second hash h2 is derived by hashing h1 together with the hint auxiliary share commit-
ments of Step 3 (over all the τ repetitions). This hash is then pseudorandomly expanded
into the challenge of Step 4 (different evaluation points r for the τ repetitions).

3. A third hash h3 is derived by hashing h2 together with the broadcast values sent by the
prover (over all the τ repetitions). This hash is then pseudorandomly expanded into the
challenge of Step 6 (different non-opened party indices i∗ for the τ repetitions).

The above hash computations take further inputs:

– Message: We introduce the message in the hash computation to obtain a message-binding
signature. We choose to introduce the message in the third hash h3 only. This enables
message-independent pre-computation of the Steps 1-to-5, which are the computationally-
expansive steps of the signing algorithm.

– Salt: For security reasons (i.e. to avoid possible collisions), we introduce a salt of 2λ
bits. This salt is further passed as argument of the tree PRG (in each node) and the
commitments of the shares. The salt is added to the signature to allow the verification.

– Public key: We also introduce the public key in the first hash h1. This makes any forgery
attempt specific to a given user, hence preventing adversarial strategies that would invest
in heavy precomputation to ease forgery for all (or many of) the users.

2.4.2 Description of the signature scheme

The high-level description of the MQOM signature scheme is wrapped-up in Figure 2. All the
pseudorandomness in the MQOM signature scheme is derived from an extendable output hash
function (XOF). If the input seed has enough entropy, the output of XOF is assumed to be
indistinguishable from true randomness.
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Input: A secret key sk := (seedeq, y, x) and a message m ∈ {0, 1}∗.

Phase 0: Initialization.

1. Expand MQ equations {Ai, bi}i∈[1:m] ← XOF(seedeq).

2. Sample a random salt salt← {0, 1}2λ.

3. Sample a master seed mseed← {0, 1}λ.

4. Expand mseed as τ root seeds {rseed[e]}e∈[1:τ ] ← XOF(salt,mseed).

Phase 1: Sharing and commitments. For each repetition e ∈ [τ ],

1. Generate the leaf seeds {seed[e]i }i∈[1:N ] ← TreePRG(salt, rseed[e]).

2. Randomly generate the shares (Jx[e]Ki, Ja[e]Ki, JQ′[e]Ki)← XOF(salt, seed
[e]
i ) for i ∈ [1 : N − 1].

3. Compute the last share of the witness Jx[e]KN = x−
∑N−1

i=1 Jx[e]Ki.

4. Compute the commitments

– com
[e]
i = Commit(salt, e, i, seed

[e]
i ) for i ∈ [1 : N − 1],

– com
[e]
N = Commit(salt, e,N, seed

[e]
N , Jx

[e]KN ).

Phase 2: First challenge.

1. Compute h1 = Hash1(pk := (seedeq, y), salt, com
[1]
1 , com

[1]
2 , . . . , com

[τ ]
N , ).

2. Expand h1 as the coefficients {γ[e]1 , . . . , γ
[e]
m }e∈[τ ] ← XOF(h1).

Phase 3: Hint and commitments. For each repetition e ∈ [τ ],

1. Compute the hint Q′[e] from x, {Ai, bi}i∈[1:m], (γ
[e]
1 , . . . , γ

[e]
m ) and a[e] =

∑N
i=1Ja

[e]Ki.

2. Compute the last share of the hint JQ′[e]KN = Q′ −
∑N−1

i=1 JQ′[e]Ki.

3. Compute the commitment com
′[e]
N = Commit(salt, e, 0, JQ′[e]KN ).

Phase 4: Second challenge.

1. Compute h2 = Hash2(salt, h1, com
′[1]
N , com

′[2]
N , . . . , com

′[τ ]
N ).

2. Expand h2 as the evaluation points {r[e]}e∈[τ ] ← XOF(h2).

Phase 5: MPC simulation. For each repetition e ∈ [τ ],

1. Apply the MPC computation in[e] := (x, a[e], Q′[e]) 7→ broad[e] := (α[e], v[e]).

2. For d ∈ [1 : D], apply the MPC computation Jin[e]KI(d,0) 7→ Jbroad[e]KI(d,0)
(where J·KI(d,0) =

∑
i∈I(d,0)J·Ki).

Phase 6: Third challenge.

1. Compute h3 = Hash3

(
salt, h2, {broad[e]}e∈[1:τ ],

{
Jbroad[e]KI(0,d)

}
d∈[1:D],e∈[1:τ ]

)
.

2. Expand h3 as the non-opened view indices {i∗[e]}e∈[τ ] ← XOF(h3).

Phase 7: Views opening. For each repetition e ∈ [τ ],

1. Compute the sibling path of the non-opened seed path[e] ← GetSiblingPath(salt, rseed[e], i∗[e]).

2. Derive the opened views as

– view[e] = (path[e], Jx[e]KN , JQ′[e]KN ) if i∗[e] ∈ [1 : N − 1],

– view[e] = path[e] if i∗[e] = N .

Phase 8: Signature.

1. Return the signature σ :=
(
salt ∥ h1 ∥ h2 ∥ h3 ∥ {view[e], broad[e], com

[e]

i∗[e]
}e∈[1:τ ]

)
.

Figure 2: MQOM – Signing algorithm
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Input: A public key sk := (seedeq, y), a message m ∈ {0, 1}∗ and a signature σ.

Phase 0: Parsing and expansion.

1.
(
salt ∥ h1 ∥ h2 ∥ h3 ∥ {view[e], broad[e], com

[e]

i∗[e]
}e∈[1:τ ]

)
← σ.

2. Expand MQ equations {Ai, bi}i∈[1:m] ← XOF(seedeq).

3. Expand h1 as the coefficients {γ[e]1 , . . . , γ
[e]
m }e∈[τ ] ← XOF(h1).

4. Expand h2 as the evaluation points {r[e]}e∈[τ ] ← XOF(h2).

5. Expand h3 as the non-opened view indices {i∗[e]}e∈[τ ] ← XOF(h3).

6. For each repetition e ∈ [τ ], parse the opened views as

– (path[e], Jx[e]KN , JQ′[e]KN ) = view[e] if i∗[e] ∈ [1 : N − 1],

– path[e] = view[e] if i∗[e] = N .

Phase 1: Recomputing shares and commitments. For each repetition e ∈ [τ ],

1. Recover the open seeds from the sibling path {seed[e]i }i∈[1:N ] ← TreePRG(salt, path[e]).

2. For i ∈ [1 : N − 1] \ {i∗[e]},

– Regenerate the shares (Jx[e]Ki, Ja[e]Ki, JQ′[e]Ki)← XOF(salt, seed
[e]
i ) for i ∈ [1 : N − 1].

– Recompute the commitments com
[e]
i = Commit(salt, e, i, seed

[e]
i ).

3. If i∗[e] ̸= N ,

– Regenerate the shares Ja[e]KN ← XOF(salt, seed
[e]
N ).

– Recompute the commitment com
[e]
N = Commit(salt, e,N, seed

[e]
N ).

– Recompute the commitment com
′[e]
N = Commit(salt, e, 0, JQ′[e]KN ).

NB: If one of these commitments is incorrect, the recomputed hashes (h′1, h
′
2) won’t match

(h1, h2) in Phase 3 below.

Phase 2: MPC simulation. For each repetition e ∈ [τ ],

1. For d ∈ [1 : D], s.t. i∗[e] ∈ I(1, d),

– Apply the MPC computation Jin[e]KI(d,0) 7→ Jbroad[e]KI(d,0).

2. For d ∈ [1 : D], s.t. i∗[e] ∈ I(d, 0),

– Apply the MPC computation Jin[e]KI(d,1) 7→ Jbroad[e]KI(d,1).

– Recover Jbroad[e]KI(d,0) = broad[e] − Jbroad[e]KI(d,1).

with J·KI(d,b) =
∑

i∈I(b,d)J·Ki, Jin[e]Ki := (JxKi, Ja[e]Ki, JQ′[e]Ki), Jbroad[e]Ki := (Jα[e]Ki, Jv[e]Ki).

NB: If one of these sum of broadcast shares is incorrect, the recomputed hash h′3 won’t match
h3 in Phase 3 below.

Phase 3: Recomputing hashes.

1. Compute h′1 = Hash1(pk := (seedeq, y), salt, com
[1]
1 , com

[1]
2 , . . . , com

[τ ]
N , ).

2. Compute h′2 = Hash2(salt, h1, com
′[1]
N , com

′[2]
N , . . . , com

′[τ ]
N ).

3. Compute h′3 = Hash3

(
salt, h2, {broad[e]}e∈[1:τ ],

{
Jbroad[e]KI(d,0)

}
d∈[1:D],e∈[1:τ ]

)
.

Phase 4: Verification.

1. If broad = (α1, . . . , αn2 , v) with v ̸= 0, then return Reject.

2. If (h1, h2, h3) ̸= (h′1, h
′
2, h

′
3), then return Reject.

3. Else return Accept.

Figure 3: MQOM – Verification algorithm
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3 Detailed algorithmic description

3.1 Notations

The elements manipulated by the signature and verification algorithms are vectors of field
elements. In the following, we denote F to mean a field which might be the SD base field Fq or
the extension field Fqη .

Vectors. For a vector v over F, we denote its length |v|, namely v ∈ Fℓ ⇔ |v| = ℓ. We further
denote v[i] the ith coordinate of v. For any two vectors v1 and v2, we denote (v1 ∥ v2) ∈ F|v1|+|v2|

their concatenation. For a vector v ∈ F|v|, for any n ∈ N, and for any sequence of positive
integers ℓ1, . . . , ℓn such that |v| = ℓ1 + · · ·+ ℓn, we denote

(v1, . . . , vn)← Parse(v,Fℓ1 , . . . ,Fℓn)

the operation which splits v into n vectors of field elements such that

v = (v1 ∥ . . . ∥ vn) and |vi| = ℓi ∀i ∈ [1 : n] .

We shall also manipulate two-dimensional vectors of field elements. For instance v ∈ (Fℓ)d
is a vector with d coordinates which are vectors of Fℓ. For such a vector, we naturally extend
the coordinate notation such that v[i] ∈ Fℓ is the ith coordinate of v, itself a vector, and
v[i][j] ∈ F is the jth coordinate of v[i]. We further extend the definition of the Parse
function to handle two-dimensional vectors. For some vector v ∈ F|v|, if we denote

(v1, . . . , vn)← Parse(v, (Fℓ1)d1 , . . . , (Fℓn)dn)

then vk is the two-dimensional vector from (Fℓk)dk satisfying

vk[i][j] = v[δk + i · ℓk + j] ∀(i, j) ∈ [1 : dk]× [1 : ℓk] .

where δ1 = 0 and δk = ℓ1d1 + · · ·+ ℓk−1dk−1 for k > 1.

Serialized variables. For any tuple (v1, . . . , vn) of two-dimensional vectors, the Serialize func-
tion “flattens” this tuple by returning the vector v defined as:

v = Serialize(v1, . . . , vn) ∈ Fℓ1d1+···+ℓndn

⇔ (v1, . . . , vn) = Parse(v, (Fℓ1)d1 , . . . , (Fℓn)dn) .

In the implementation, the output of Serialize are represented in a compact way, as follows:

• For F = F31, each coordinate of an F31-vector output by Serialize is represented on 5 bits.
Each chunk of 8 elements e1, . . . , e8 in a serialized variable is hence stored on 5 bytes B1,
. . . , B5 such that

(e1 ∥ · · · ∥ e8) = (B1 ∥ · · · ∥ B5)

The last chunk of a serialized F31-vector might be stored on a smaller number of bytes
(specifically on ⌈ℓ ∗ 5/8⌉ bytes where ℓ is the number of coordinates in the last chunk).

• For F = F251, each coordinate of an F251-vector output by Serialize is stored on a single
byte.

In the algorithmic description below, we sometimes perform linear operations between seri-
alized variables, such as var1 + var2 (or var1 − var2). This is to be interpreted as adding (or
subtracting) each coordinate of the F-vector represented by the serialized variable, while keeping
the compact representation for the serialized output.
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Arithmetic operations. In the algorithmic description, we shall use the operator · to denote
the product over Fq. We shall further use this operator for the scalar product between a value
u ∈ Fq and a vector v = (v1, . . . , vℓ) ∈ Fℓq, that is

u · v = (u · v[1], . . . , u · v[ℓ]) .

An element of Fqη is represented as a vector of η elements of Fq. For any v ∈ Fqη , we denote
v ≡ (v1, . . . , vη) ∈ Fηq the relation between v and the corresponding Fq-vector. We shall use
the operator ⊗ to denote the product over Fqη . For any u, v ∈ Fηq , with u ≡ (u1, . . . , uη) and
v ≡ (v1, . . . , vη), the product z = u⊗ v is defined as:

z ≡ (z1, . . . , zη) s.t.
∑η

i=1
ziu

i−1 =
(∑η

i=1
uiu

i−1
)(∑η

i=1
viu

i−1
)

mod f(u) , (12)

where f(u) is the degree-η irreducible polynomial of Fq[u] such that Fqη ≡ Fq[u]/f(u).

Intermediate variables. We use the mathematical notations introduced in Section 2 and sum-
marized in Table 1. The different seeds, indexes and serialized variables are summarized in
Table 2.

Table 2: Descriptions of the low-level notations used in our scheme.

Seeds:

seedroot {0, 1}λ Root seed which is expanded into seedx and seedeq.

seedx {0, 1}λ Seed for the generation of the MQ solution x.

seedeq {0, 1}λ Seed for the generation of the MQ equations {Ai, bi}.
mseed {0, 1}λ Master seed for all the pseudo-randomness of the signature.

salt {0, 1}2λ Salt for the pseudo-randomness and commitments of the signature.

rseed[e] {0, 1}λ Seeds which are the roots of the seed tree.

seed[e][i] {0, 1}λ Parties’ seeds (leaves of the seed trees).

Indexes:

e 1, . . . , τ Index for the current repetition.

i 1, . . . , N Index for the current party.

d 1, . . . , D Index for the dimension of the hypercube.

j 1, . . . , n2 Index for the current chunk.

k 1, . . . , n1 Position in a chunk.

Serialized variables:

x Fnq Serialized plain MQ solution x.

y Fmq Serialized plain MQ output y.

unif plain Fηn2
q Serialized plain uniformly-sampled a = (a[1], . . . , a[n2]).

hint plain Fη(2n1−1)
q Serialized hint polynomial Q′.

in plain Fn+ηn2+η(2n1−1)
q Serialized plain input: in plain = (x, unif plain, hint plain).

broad plain Fηn2
q Serialized plain broadcast: α = (α[1], . . . , α[n2]).

in mshare Fn+ηn2+η(2n1−1)
q Serialized input main share: JxKI(d,b), JaKI(d,b), JQ′KI(d,b).

broad mshare Fη(n2+1)
q Serialized broadcast main share: JαKI(d,b), JvKI(d,b).
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3.2 Subroutines

In this subsection, we describe different subroutines which are involved in our key generation,
signature, and verification algorithms. These sub-routines are related to (i) the MPC simulation,
(ii) the randomness generation, (iii) the hash functions, and (iv) the seed trees.

3.2.1 MPC subroutines

We describe hereafter all the subroutines required for the MPC simulation following the de-
scription of Section 2.3.

Polynomial evaluation. We define the function PolyEval which takes as input an Fqη -vector Q
representing the coefficients of polynomial of Fqη [u] and a point r ∈ Fqη , computes the evaluation
Q(r). Formally, we have

PolyEval :

{ ⋃
d(Fqη)d × Fqη → Fqη

(Q, r) 7→
∑|Q|

i=1Q[i] · ri−1
where ri−1 = r ⊗ r ⊗ · · · ⊗ r︸ ︷︷ ︸

i− 1 times

.

Polynomial product. We define the function PolyProduct which takes as input two Fqη -vectors
P1 and P2 representing the coefficients of polynomials from Fqη [u] and output a Fqη -vector Q
of length |Q| = |P1|+ |P2| − 1 representing their product. Formally, we have

PolyProduct :

{ ⋃
d(Fqη)d ×

⋃
d(Fqη)d → Fqη

(P1, P2) 7→ Q
where Q(u) = P1(u) · P2(u) .

Polynomial interpolation. We define two subroutines for polynomial interpolation. The sub-
routine InterpolateX maps a vector x ∈ Fnq to n2 polynomials X[1], . . . , X[n2] represented
as vectors of coefficients in Fn1

q . These polynomials are computed by interpolating each n1-long
chunk of x (where the last chunk is possibly padded with 0’s) on the set {f1, . . . , fn1} as depicted
by Equation 2 and Equation 6.

The subroutine InterpolateW works the same way as InterpolateX with two differences: (1)
it works over the extension field Fqη , (2) the interpolation of the last chunk polynomial uses
n′1 ≤ n1 elements. Specifically, InterpolateW maps a vector w ∈ Fnqη to n2 polynomials W[1],
. . . , W[n2]. These polynomials are computed by interpolating the n2 − 1 first n1-long chunks
of w on the set {f1, . . . , fn1} and the last n′1-long chunk on the set {f1, . . . , fn′

1
} as depicted by

Equation 2 and Equation 6.

Plain hint computation. The subroutine ComputePlainHint, described in Algorithm 1, com-
putes the plain value of the hint Q′. It takes as input the witness x (or equivalently the
polynomials X[j]), the random masks a[1], . . . , a[n2], the random coefficients γ1, . . . , γm,
and the MQ equations {Ai, bi}i, from which it first computes w (or equivalently the polynomials
W[j]) and then the hint polynomial Q′ (plain value) according to Equation 8 and Equation 4.

The subroutine ComputePlainHint makes use the function TruncateQ which returns the Fn1−2
q

vector Q′ obtained by dropping the left-most element of its input Q ∈ Fn1−1
q . In polynomial

terms, this means computing Q′(u) = (Q(u)− q0)/u, where q0 denotes the constant term of Q.
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Algorithm 1 ComputePlainHint

Input: x, unif plain, chal1, {Ai, bi}i
Output: hint plain
1: x← Parse(x,Fnq )
2: a← Parse(unif plain,Fn2

qη )
3: (γ1, . . . , γm)← Parse(chal1,Fmqη)
4: w ← (

∑m
i=1 γiAi)x ▷ w ∈ Fnqη

5: X ← InterpolateX(x)
6: W ← InterpolateW(w)
7: Q←

∑n2
j=1 PolyProduct(W[j] + a[j] · V,X[j]) ▷ Q ∈ F2n1

qη

8: Q′ ← TruncateQ(Q) ▷ Q′ ∈ F2n1−1
qη

9: hint plain = Serialize(Q′)
10: return hint plain

Computation of plain broadcast values. The subroutine ComputePlainBroadcast, described
in Algorithm 2, computes the publicly recomputed values from the broadcast shares during
the MPC protocol, namely the evaluations α[j] = W̃[1](r), . . . , α[n2] = W̃[1](r). It takes
as input the witness x (or equivalently the polynomials X[j]), the random masks a[1], . . . ,
a[n2], the random coefficients γ1, . . . , γm, the random evaluation point r, and the MQ equations
{Ai, bi}i, from which it first computes w (or equivalently the polynomials W[j]) and then the
evaluations α[j] = W̃[j](r).

Algorithm 2 ComputePlainBroadcast

Input: in plain := (x, unif plain, hint plain), chal1, chal2, {Ai, bi}i
Output: broad plain
1: x← Parse(x,Fnq )
2: a← Parse(unif plain,Fn2

qη )
3: (γ1, . . . , γm)← Parse(chal1,Fmqη)
4: r ← Parse(chal2,Fqη)
5: w ← (

∑m
i=1 γiAi)x ▷ w ∈ Fnqη

6: W ← InterpolateW(w)
7: for j ∈ [1 : n2] do
8: W̃[j]←W[j] + a[j] · V
9: α[j]← PolyEval(W̃[j], r)

10: broad plain = Serialize(α)
11: return broad plain

Remark 1. The plain value v = 0 is omitted from broad plain. In the verification algorithm,
while subtracting a sum of broadcast shares to the plain broadcast value, the latter must hence
be padded with η 0’s to match the format of shared broadcast values. See Remark 3 below.

Computation of broadcast shares. The subroutine PartyComputation, described in Algo-
rithm 3, performs the computation of a main party. Namely from the input shares of the main
party, it computes the corresponding broadcast shares. For some d ∈ [1 : D] and b ∈ {0, 1}, it
computes the sum of broadcast shares

Jbroad[e]KI(d,b) := (Jα[e]KI(d,b), Jv[e]KI(d,b))
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from the sum of input shares

Jin[e]KI(d,b) := (Jx[e]KI(d,b), Ja[e]KI(d,b), JQ′[e]KI(d,b))

where J·KI(d,b) =
∑

i∈I(d,b)J·Ki and I(d, b) is as defined in Equation 11.

This subroutine takes as input the sum of input shares Jin[e]KI(d,b) (argument in mshare), the
challenge random coefficients γ1, . . . , γm (argument chal1), the evaluation point r (argument
chal2), and the MQ instance ({Ai, bi}i, y), from which it computes the sum of broadcast shares
Jbroad[e]KI(d,b).

This subroutine further takes as input a Boolean with offset which is True if d = 1 and False

otherwise. This Boolean indicates whether the constant part of the computed affine function
should be introduced or not.

Algorithm 3 PartyComputation

Input: in mshare, chal1, chal2, ({Ai, bi}i, y), broad plain, with offset
Output: broad mshare
1: (x mshare, unif mshare, hint mshare)← in mshare
2: y ← Parse(y,Fmq )
3: JxKI(d,b) ← Parse(x mshare,Fnq )
4: JaKI(d,b) ← Parse(unif mshare,Fn2

qη )

5: JQ′KI(d,b) ← Parse(hint mshare,F2n1−1
qη )

6: (γ1, . . . , γm)← Parse(chal1,Fmqη)
7: r ← Parse(chal2,Fqη)
8: α← Parse(broad plain,Fqη)
9: JwKI(d,b) ← (

∑m
i=1 γiAi)JxKI(d,b) ▷ JwKI(d,b) ∈ Fnqη

10: if with offset is True then
11: JzKI(d,b) ←

∑m
i=1 γi(yi − bTi JxKI(d,b)) ▷ JzKI(d,b) ∈ Fqη

12: else
13: JzKI(d,b) ← −

∑m
i=1 γi · bTi JxKI(d,b)

14: JXKI(d,b) ← InterpolateX(JxKI(d,b))
15: JW KI(d,b) ← InterpolateW(JwKI(d,b))
16: for j ∈ [1 : n2] do
17: JW̃[j]KI(d,b) ← JW[j]KI(d,b) + Ja[j]KI(d,b) · V
18: Jα[j]KI(d,b) ← PolyEval(JW̃[j]KI(d,b), r)

19: Jq0K = (n1)
−1
(
JzK−

∑n1
i=1 fi · PolyEval(JQ′KI(d,b), fi)

)
20: JvKI(d,b) = r · PolyEval(JQ′KI(d,b), r) + Jq0KI(d,b) −

∑n2
j=1 α[j] · PolyEval(JX[j]KI(d,b), r)

21: broad mshare = Serialize(JαKI(d,b), JvKI(d,b))
22: return broad mshare
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3.2.2 Pseudorandomness generation

Several subroutines used in the MQOM signature schemes involve pseudorandomness generation
from a seed. Several seeds are expanded from a master seed in the key generation and the
signature algorithms. One also needs to sample pseudorandom sequences of field elements from
a seed to expand the MQ instance and the sharings involved in the signature and verification
algorithms. Finally, pseudorandomness generation is also involved to derive the challenges
(MPC challenges and view-opening challenge) from the Fiat-Shamir hashes h1, h2 and h3.

Extendable output function. The pseudorandomness in MQOM is generated through an ex-
tendable output hash function (XOF). Such a function takes an arbitrary-long input bitstring
in ∈ {0, 1}∗ and produces an arbitrary-long output bitstring out ∈ {0, 1}∗ whose length is tai-
lored to the requirements of the application. Formally, a XOF is equipped with two routines:
XOF.Init(in) initializes the XOF state with the input in ∈ {0, 1}∗. Once initialized, the XOF
can be queried with the routine XOF.GetByte() to generate the next byte of the output out
associated to in. The concrete instance of the XOF we use in the MQOM scheme is given in
Section 4.6. In our context, we use the XOF as a secure pseudorandom generator (PRG) which
tolerates input seeds of variable lengths.

Sampling from XOF. We shall denote by Sample, the routine generating pseudorandom ele-
ment from an arbitrary set V. A call to

v ← XOF.Sample(V)

outputs a uniform random element v ∈ V. The Sample routine relies on calls to GetByte to
generate pseudorandom bytes which are then formatted to obtain a uniform variable v ∈ V,
possibly using rejection sampling. The implementation of Sample depends on the target set V.
We detail the case of sampling field elements hereafter, namely when V = Fnq for some n.

Sampling field elements. The subroutine XOF.SampleFieldElements(n) samples n pseudo-
random elements from Fq. It assumes that the XOF has been previously initialized by a call to
XOF.Init(·). We consider two different fields: F31 and F251.

• For F31, we use XOF.GetByte() to generate bytes five-by-five. From 5 bytes, we get 8
chunks of 5 bits, eaching yielding an element of F31, with a 1/32 rejection rate. Specifically,
the SampleFieldElements routine works as follows:

1: i = 1
2: while i ≤ n do
3: for j = 1 to 5 do
4: Bj ← XOF.GetByte()

5: (e1 ∥ · · · ∥ e8)← (B1 ∥ · · · ∥ B5)
6: for j = 1 to 8 do
7: if ej ̸= 31 then
8: fi = ej ; i ++

9: return (f1, . . . , fn)

Remark 2. In the instruction (e1 ∥ · · · ∥ e8) ← (B1 ∥ · · · ∥ B5), we consider that the
bits of ei and Bi are represented in little-endian when concatenating. It implies that the
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least-significant bit of e1 is the least-significant bit of B1 and that the most-significant bit
of e8 is the most-significant bit of B5.

• For F251, we use XOF.GetByte() to generate each element of the sequence, with a 5/256
rejection rate. Specifically, the SampleFieldElements routine works as follows:

1: i = 1
2: while i ≤ n do
3: B ← XOF.GetByte()
4: if B ∈ {0, 1, . . . , 250} then
5: fi = B; i ++

6: return (f1, . . . , fn)

Seed expansion. The subroutine ExpandSeed expands a salt and a master seed into a given
number of seeds. Specifically, a call to ExpandSeed(salt, seed, n) initializes the XOF by calling
XOF.Init(salt ∥ seed) and then calls XOF.GetByte() to generate a stream of bytes B1, . . . ,
Bnλ/8 which are divided into n output λ-bit seeds seed1, . . . , seedn as follows:

(B1, . . . , Bλ/8︸ ︷︷ ︸
seed1

, . . . , B(n−1)λ/8+1, . . . , Bnλ/8︸ ︷︷ ︸
seedn

)

Expansion of the MQ secret. The subroutine ExpandSecret takes as input λ-bit seed seedx
and returns a vectors x. A call to ExpandSecret(seedx) performs as follows:

1: XOF.Init(seedx)
2: x← XOF.SampleFieldElements(n)
3: return x

Expansion of the MQ equations. The subroutine ExpandMQEquations takes as input λ-bit
seed seedeq and returns m triangular matrices A1, . . . , Am ∈ Fn×nq and m vectors b1, . . . , bm ∈ Fnq .
A call to ExpandMQEquations(seedeq) performs as follows:

1: XOF.Init(seedeq)
2: for i = 1 to m do
3: for j = 1 to n do
4: (aj,1, . . . , aj,j)← XOF. SampleFieldElements(j)
5: (aj,j+1, . . . , aj,n)← (0, . . . , 0)

6: Ai = (aj,k)1≤j≤n,1≤k≤n
7: bi ← XOF.SampleFieldElements(n)

8: return {Ai, bi}i

Expansion of MPC challenge. The subroutines ExpandFirstMPCChallenge expands the first
Fiat-Shamir hash h1 into the sequences of coefficients γ1, . . . , γm ∈ Fqη (one per execution).
For each execution, the challenge is sampled as a sequence of mη field elements. A call to
ExpandFirstMPCChallenge(h1) performs as follows:

1: XOF.Init(h1)
2: for e = 1 to τ do
3: chal1[e]← XOF.SampleFieldElements(mη)

4: return {chal1[e]}e∈[1:τ ]
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The subroutines ExpandSecondMPCChallenge expands the first Fiat-Shamir hash h2 into
the evaluation points (one per execution). For each execution, the evaluation point r ∈ Fqη is
sampled as a sequence of η field elements. A call to ExpandSecondMPCChallenge(h2) performs
as follows:

1: XOF.Init(h2)
2: for e = 1 to τ do
3: chal2[e]← XOF. SampleFieldElements(η)
4: while chal2[e] ∈ {f1, . . . , fn1} do
5: chal2[e]← XOF.SampleFieldElements(η)

6: return {chal2[e]}e∈[1:τ ]

Expansion of view-opening challenge. The subroutine ExpandViewChallenge, expands the
third Fiat-Shamir hash h3 into the view-opening challenge i∗[1], . . . , i∗[τ], where i∗[e] ∈ [1 :
N ] is the index of the non-opened party for execution e. This subroutine assumes that N = 2D

(N is a power of 2) with D ≤ 16. A call to ExpandViewChallenge(h3) performs as follows:

1: XOF.Init(h3)
2: for e = 1 to τ do
3: B0 ← XOF.GetByte()
4: B1 ← XOF.GetByte()
5: i∗[e] = (B0 + 256 ·B1) mod 2D

6: return {i∗[e]}e∈[1:τ ]

3.2.3 Hashing and commitments

Several subroutines used in the MQOM signature scheme involve cryptographic hashing. This is
the case of the subroutines computing the Fiat-Shamir hashes, the commitments and the seed
trees.

Cryptographic hash function. The different subroutines all use a common cryptographic hash
function

Hash : {0, 1}∗ → {0, 1}2λ .

The concrete instance of the hash function we use in the MQOM scheme is given in Section 4.6.

We use domain separation for the different usages of the hash function. This is simply done
by prepending a fixed byte value to the data to be hashed, as specified below for the different
cases.

Commitments. The subroutine Commit takes as input a 2λ-bit salt, an execution index e,
a share index i and some data data ∈ {0, 1}∗. It hashes them all together and returns the
corresponding digest. Specifically, we define:

Commit(salt, e, i, data) = Hash(0 ∥ salt ∥ e0 ∥ e1 ∥ i0 ∥ i1 ∥ data) ,

where e0, e1, i0, i1 are the byte values such that e = e0 + 256 · e1 and i = i0 = 256 · i1, where 0,
e0, e1, i0 and i1 are encoded on one byte, and where salt is encoded on 2λ/8 bytes.
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Fiat-Shamir Hashes. The hash functions Hash1, Hash2, Hash3 used to derive the Fiat-Shamir
Hashes h1, h2 and h3 are defined as:

Hash1(data) = Hash(1 ∥ data)

Hash2(data) = Hash(2 ∥ data)

Hash3(data) = Hash(3 ∥ data)

where the prefixes 1, 2 and 3 are encoded on one byte.

Hashes in seed trees. The pseudorandom generation occuring in each node of a seed tree relies
on a call to a hash function. The hash function Hash4 used in the seed trees (see description
below) is defined as:

Hash4(data) = Hash(4 ∥ data) ,

where the prefix 4 is encoded on one byte.
As described hereafter, the child nodes in a seed trees are derived with one call to Hash4 as

follows:
(nodes[2i] ∥ nodes[2i+ 1]) = Hash4(salt ∥ i0 ∥ i1 ∥ nodes[i])

where i0, i1 are such that i = i0 + 256 · i1.

3.2.4 Seed trees

As explained in Section 2.4, the MQOM signature relies on seed trees. The latter are handled
through the three following subrountines:

• TreePRG (Algorithm 4): it takes a 2λ-bit salt and a λ-bit seed, and returns N λ-bit seeds
which correspond to the leaves of a binary seed tree with the given seed as root.

• GetSiblingPath (Algorithm 5): it takes a seed tree nodes, an index i∗, and it returns the
sibling path of the seed leave indexed by i∗ in the tree.

• GetSeedsFromPath (Algorithm 6): its takes an index i∗, a seed path, and a 2λ-bit salt,
and it returns the seed leaves (except the one with index i∗) of the tree which would give
this path when opening for i∗.

Algorithm 4 TreePRG

Input: A salt salt ∈ {0, 1}2λ and a seed rseed ∈ {0, 1}λ
Output: nodes, seeds, a seed tree (with its 2D+1 − 1 nodes) and the 2D seed leaves
1: nodes[1] = rseed
2: for i from 1 to 2D − 1 do
3: (nodes[2i] ∥ nodes[2i+ 1]) = Hash4(salt ∥ i0 ∥ i1 ∥ nodes[i]) ▷ i = i0 + 256 · i1
4: seeds = (nodes[2D], . . . , nodes[2D+1 − 1])
5: return (nodes, seeds) ▷ the seed tree, with its leaves
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Algorithm 5 GetSiblingPath

Input: A seed tree nodes and an index i∗ ∈ {1, . . . , 2D}
Output: The sibling path path ∈

(
{0, 1}λ

)D
of the seed leave indexed by i∗

1: hidden node = i∗

2: path← ∅
3: for h from D to 1 do
4: if hidden node odd then
5: path← (path ∥ nodes[hidden node− 1])
6: else
7: path← (path ∥ nodes[hidden node + 1])

8: hidden node←
⌊
hidden node

2

⌋
9: return path

Algorithm 6 GetSeedsFromPath

Input: An index i∗ ∈ {1, . . . , 2D}, the sibling path path ∈
(
{0, 1}λ

)D
of the seed leave indexed

by i∗, and a salt salt ∈ {0, 1}2λ
Output: The seed leaves of the corresponding trees, with seeds[i∗] = null

1: hidden node = i∗

2: for i from 1 to 2D+1 − 1 do
3: nodes[i] = null

4: for h from D to 1 do
5: (seed ∥ path)← path
6: if hidden node odd then
7: nodes[hidden node− 1] = seed
8: else
9: nodes[hidden node + 1] = seed

10: hidden node←
⌊
hidden node

2

⌋
11: for i from 1 to 2D − 1 do
12: if nodes[i] ̸= null then
13: (nodes[2i] ∥ nodes[2i+ 1]) = Hash4(salt ∥ i0 ∥ i1 ∥ nodes[i]) ▷ i = i0 + 256 · i1
14: seeds = (nodes[2D], . . . , nodes[2D+1 − 1])
15: return seeds
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3.3 Key generation

The key generation of MQOM consists in pseudorandomly generating an MQ instance, with
triangular matrices Ai. It takes as input a root seed seedroot from which it derives two further
seeds seedx and seedeq. The secret witness x is derived from seedx while the MQ equations
{Ai, bi} are derived from seedeq. The MQ output y is then computed from {Ai, bi} and x.
Finally, the key pair is defined and returned as pk := (seedeq, y) and sk := (seedeq, y, x) with x
and y in serialized form.

Algorithm 7 MQOM – Key Generation

1: seedroot ← {0, 1}λ
2: (seedx, seedeq)← ExpandSeed(salt := 0, seedroot, 2) ▷ seedx, seedeq ∈ {0, 1}λ
3: x← ExpandSecret(seedx) ▷ x ∈ Fnq
4: {Ai, bi}i∈[1:m] ← ExpandMQEquations(seedeq) ▷ Ai ∈ Fn×nq , bi ∈ Fnq
5: for i ∈ [1 : m] do
6: yi = x⊺Aix+ b⊺i x ▷ yi ∈ Fq
7: x = Serialize(x)
8: y = Serialize(y)
9: pk = (seedeq, y); sk = (seedeq, y, x)

10: return (pk, sk)
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3.4 Signature algorithm

A detailed description of the signature algorithm is given in Algorithm 8 and Algorithm 9.

Algorithm 8 MQOM – Signature Algorithm – Part 1/2

Input: a secret key sk = (seedeq, y, x) and a message m ∈ {0, 1}∗

▷ Phase 0: Initialization.

1: {Ai, bi}i∈[1:m] ← ExpandMQEquations(seedeq)

2: salt← {0, 1}2λ
3: mseed← {0, 1}λ
4: {rseed[e]}e∈[1:τ ] ← ExpandSeed(salt,mseed, τ) ▷ rseed[e] ∈ {0, 1}λ

▷ Phase 1: Sharing and commitments.

5: for e ∈ [1 : τ ] do
6:

(
tree[e], {seed[e][i]}i∈[1:N ]

)
← TreePRG(salt, rseed[e])

7: in mshare[e][d] = 0 for all d ∈ [1 : D] ▷ in mshare[e][d] ∈ Fn+η(n2+2n1−1)
q

8: for i ∈ [1 : N ] do
9: XOF.Init(seed[e][i])

10: if i ̸= N then
11: in share[e][i]← XOF.SampleFieldElements(n+ η(n2 + 2n1 − 1))

12: ▷ in share[e][i] ∈ Fn+η(n2+2n1−1)
q

13: com[e][i] = Commit(salt, e, i, seed[e][i])
14: for d ∈ [1 : D] : the dth bit of i− 1 is zero, do
15: in mshare[e][d] += in share[e][i]

16: else
17: in acc[e] =

∑N−1
i=1 in share[e][i]

18: (x acc[e], unif acc[e], hint acc[e])← Parse(in acc[e],Fnq ,F
η·n2
q ,Fη(2n1−1)

q )
19: unif plain[e] = unif acc[e] + XOF.SampleFieldElements(n2 · η)
20: x aux[e] = x− x acc[e] ▷ x aux[e] ∈ Fnq
21: com[e][i] = Commit(salt, e, i, seed[e][i] ∥ x aux[e])

▷ Phase 2: First challenge (random coefficients γ1, . . . , γm).

22: h1 = Hash1(m, salt, com[1][1], . . . , com[τ][N])
23: {chal1[e]}e∈[1:τ ] ← ExpandFirstMPCChallenge(h1, τ)

▷ Phase 3: Hint and commitments (polynomial Q′).

24: for e ∈ [1 : τ ] do
25: hint plain[e] = ComputePlainHint(x, unif plain[e], chal1[e], ({Ai, bi}i∈[1:m], y))

26: hint aux[e] = hint plain[e]− hint acc[e] ▷ hint aux[e] ∈ Fη(2n1)
q

27: com′[e] = Commit(salt, e, 0, hint aux[e])
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Algorithm 9 MQOM – Signature Algorithm – Part 2/2

▷ Phase 4: Second challenge (random evaluation point r).

1: h2 = Hash2(m, salt, h1, com
′[1], . . . , com′[τ])

2: (chal2[e])e∈[1:τ ] ← ExpandSecondMPCChallenge(h2, τ)

▷ Phase 5: MPC simulation.

3: for e ∈ [1 : τ ] do
4: in plain[e] = (x, unif plain[e], hint plain[e])
5: broad plain[e]← ComputePlainBroadcast(in plain[e], chal1[e], chal2[e], {Ai, bi}i∈[1:m])
6: for d ∈ [1 : D] do
7: broad mshare[e][d] = PartyComputation

(
in mshare[e][d], chal1[e], chal2[e],
({Ai, bi}i∈[1:m], y), broad plain[e], False

)
▷ broad mshare[e][d] ∈ F(2d+1)tη

q

▷ Phase 6: Third challenge (view opening).

8: h3 = Hash3(m, salt, h2, {broad plain[e]}e∈[1:τ ], {broad mshare[e][d]}d∈[1:D],e∈[1:τ ]).
9: {i∗[e]}e∈[1:τ ] ← ExpandViewChallenge(h3).

▷ Phase 7: Views opening.

10: for e ∈ [1 : τ ] do
11: path[e]← GetSiblingPath(tree[e], i∗[e]).
12: if i∗[e] = N then
13: view[e] = (path[e], com′[e])
14: else
15: view[e] = (path[e], x aux[e], hint aux[e])

▷ Phase 8: Signature.

16: σ =
(
salt ∥ h1 ∥ h2 ∥ h3 ∥ {view[e], broad plain[e], com[e][i∗[e]]}e∈[1:τ ]

)
17: return σ
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3.5 Verification algorithm

A detailed description of the verification algorithm is given in Algorithm 10 and Algorithm 11.

Algorithm 10 MQOM – Verification Algorithm – Part 1/2

Input: a public key pk = (seedeq, y), a signature σ and a message m ∈ {0, 1}∗

▷ Phase 0: Parsing and expansion.

1:
(
salt ∥ h1 ∥ h2 ∥ h3 ∥ {view[e], broad plain[e], com[e][i∗[e]]}e∈[1:τ ]

)
= σ

2: {Ai, bi}i∈[1:m] ← ExpandMQEquations(seedeq)
3: chal1 ← ExpandFirstMPCChallenge(h1, τ) ▷ Coefficients γ1, . . . , γm
4: chal2 ← ExpandSecondMPCChallenge(h2, τ) ▷ Evaluation point r
5: {i∗[e]}e∈[1:τ ] ← ExpandViewChallenge(h3) ▷ Unopened view indexes

6: for e ∈ [1 : τ ] do ▷ Main loop (over the τ repetitions)

▷ (Main loop) Phase 0: Parsing views

7: if i∗[e] = N then
8: (path[e], com′[e]) = view[e]
9: else

10: (path[e], x aux[e], hint aux[e]) = view[e]

▷ (Main loop) Phase 1: Recomputing shares and commitments.

11: (seed[e][i])i∈[1:N\i∗[e]] ← GetSeedsFromPath(i∗[e], salt, path[e])
12: in open mshare[d] = 0 for all d ∈ [1 : D] ▷ main party share not containing i∗[e]
13: for i ∈ [1 : N ]\i∗[e] do
14: XOF.Init(seed[e][i])
15: if i ̸= N then
16: in share[e][i]← XOF.SampleFieldElements(n+ η(n2 + 2n1 − 1))
17: com[e][i] = Commit(salt, e, i, seed[e][i])
18: else
19: unif plain[e][N] = XOF. SampleFieldElements(n2 · η)
20: in share[e][N] = (x aux[e] ∥ unif plain[e][N] ∥ hint aux[e])
21: com[e][i] = Commit(salt, e, i, (seed[e][i] ∥ x aux[e]))
22: com′[e] = Commit(salt, e, 0, hint aux[e])

23: for d ∈ [1 : D] : the dth bit of i− 1 and i∗[e] are different do
24: in open mshare[e][d] += in share[e][i] ▷ in open mshare does not contain i∗

▷ (Main loop) Phase 2: MPC simulation.

25: for d ∈ [1 : D] do
26: if the dth bit of i∗[e] is 1 then
27: broad mshare[e][d] =

PartyComputation
(
in open mshare[e][d], chal1[e], chal2[e],
({Ai, bi}i∈[1:m], y), broad plain[e], False

)
28: else
29: broad mshare[e][d] = (broad plain[e] ∥ 0η)

−PartyComputation
(
in open mshare[e][d], chal1[e], chal2[e],

({Ai, bi}i∈[1:m], y), broad plain[e], True
)



30 MQOM: MQ on my Mind

Algorithm 11 MQOM – Verification Algorithm – Part 2/2

▷ Phase 3: Recomputing hashes.

1: h′1 = Hash1(salt, com[1][1], . . . , com[τ][N])
2: h′2 = Hash2(m, salt, h1, com

′[1], . . . , com′[τ])
3: h′3 = Hash2(m, salt, h2, {broad plain[e]}e∈[1:τ ], {broad mshare[e][d]}d∈[1:D],e∈[1:τ ]).

▷ Phase 4: Verification.

4: return (h1, h2, h3)
?
= (h′1, h

′
2, h

′
3)

Remark 3. In Step 28 of Algorithm 10, (broad plain[e] ∥ 0η) means broad plain[e] padded
with η 0’s which account for the expected plain value of v ∈ Fqη . The zero-valued v is omitted
from the plain broadcast values to avoid increasing the size of the signature.
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4 Parameters and performances

In this section, we propose several parameter sets for the MQOM signature scheme. As explained
hereafter, those parameters have been selected to meet the categories I, III and V defined by
the NIST while targeting good performances (signature size and running times).

4.1 Selection of the parameters

MQ parameters. We first fixed the base field characteristic, testing values ranging from q = 17
to q = 251. For each tested q, we took the number of equations m to be equal the number of
unknowns n and selected m = n in order to achieve the target level of security (categories I, III
and V) according to the MQ estimator [BMS+22] (see details in Section 5.2).

MPC parameters. At first we fix the number of parties to N = 256 (or equivalently the
hypercube dimension D = 8) to achieve running times of few milliseconds while keeping short
signatures. Then for each tested q, and given the selected MQ parameters n = m, we exhaust
the relevant MPC parameters (n1, n2, η).

Given (q, n,m, n1, n2, η) we deduce the number of repetitions τ necessary to achieve a forgery
cost larger than λ bits, when λ is 128, 192 and 256 respectively for Categories I, III and V.
Currently, the best forgery attack is obtained by applying the approach of [KZ20] and its cost
is given by Equation 13 (see description Section 5.3). Then from (q, n,m, n1, n2, η) and τ , we
deduce the size of a signature. For each q (and associated n = m), we kept the MPC parameters
(n1, n2, η) leading to the shortest signature. Table 3 summarizes the parameters and sizes we
obtained for the different tested values of q.

Table 3: Tested fields Fq, corresponding MQ parameters n = m, and optimal parameters for
MQOM in terms of signature size (for N = 256).

q n = m n1 n2 η τ Size

17 54 5 11 10 20 6 528

19 53 5 11 10 20 6 528

23 51 4 13 10 20 6 489

29 50 5 10 10 20 6 368

31 49 5 10 10 20 6 348

37 → 53 48 4 12 6 23 6 615

59 → 61 47 4 12 6 23 6 615

67 → 73 47 4 12 7 20 6 508

79 → 83 46 4 12 7 20 6 488

89 → 127 45 5 9 6 22 6 640

131 → 137 45 5 9 5 22 6 618

139 → 173 44 4 11 5 22 6 596

179 → 251 43 4 11 5 22 6 575

We chose to propose the instances obtained for q = 31 and q = 251. The former achieves the
shorter signature size for the tested fields. Moreover, an MQ instance with q = 31 was previously
considered in the MQ-DSS [CHR+20] which might already have motivated some cryptanalysis
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attempts on those parameters. On the other hand, q = 251 give the larger prime field whose
elements hold in single bytes. Moreover it requires a smaller extension degree η than q = 31
which makes the underlying arithmetic faster. Such an instance might also be more amenable
to future improvements of MPCitH based on threshold secret sharing [FR22].

Finally, we chose to add a “fast” variant relying on N = 32 parties. Compared to the “short”
variant with N = 256, the “fast” variant is 2 to 3 times faster for the considered instances, for
an overhead of ∼20% in the signature size.

4.2 Symmetric cryptography primitives

The MQOM signature scheme relies on two types of symmetric cryptography primitives: a hash
function (Hash) which we instantiate with SHA3 [Dwo15], and an extendable output function
(XOF) which we instantiate with SHAKE [Dwo15]. Table 4 summarizes the instances for each
security category.

Table 4: Symmetric cryptography primitives for NIST Security Categories I, III, and V.

Category I Category III Category V

Hash SHA3-256 SHA3-384 SHA3-512

XOF SHAKE-128 SHAKE-256 SHAKE-256

We recall here the usage of these symmetric primitives in the MQOM signature scheme (see
Section 3 for details):

• Hash is used for

– the commitments,

– the Fiat-Shamir hashes h1, h2 and h3,

– the nodes of the seed trees.

• XOF is used for

– the expansion of the MQ equations {Ai, bi}i,
– the expansion of the hashes h1, h2 and h3 into the MPC and view-opening challenges,

– the expansion of the seeds (key generation and root seeds from master seed),

– the expansion of the shares from the leaf seeds.

4.3 Polynomial interpolation

The MQOM signature scheme performs some polynomial interpolations as depicted by Equa-
tion 2 and Equation 6 (see the subroutines InterpolateX and InterpolateW). These interpola-
tions rely on some distinct field elements f1, . . . , fn1 ∈ Fq. In our instances, we use

f1 := 0,

f2 := 1,

...

fn1 := n1 − 1.
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4.4 Extension fields

The MQOM signature scheme relies on an extension field Fqη whose extension degree varies for
the different variants (security category and/or short vs. fast variant). Table 5 summarizes the
field extensions that we use in our instances.

Table 5: Definition of field extensions.

Fqη Field extension

F316 F31[u]/⟨u6 − 3⟩
F317 F31[u]/⟨u7 − u− 3⟩
F318 F31[u]/⟨u8 − u2 − 1⟩
F3110 F31[u]/⟨u10 − 3⟩
F3111 F31[u]/⟨u11 − u3 − 1⟩
F2512 F251[u

′]/⟨u′2 − 2⟩
F2514 F2512 [u]/⟨u2 − (u′ + 1)⟩
F2515 F251[u]/⟨u5 − 3⟩
F2517 F251[u]/⟨u7 − u− 1⟩

4.5 Keys and signature costs

Public key. The public key is of the format pk := (seedeq, y); consisting of a λ-bit seed seedeq
representing the equations of the MQ instance, and a serialized vector y ∈ Fmq corresponding to
the outputs of the equations. For q = 31, we store 8 field elements on 5 bytes. For q = 251, we
store one field element on one byte. The public key size is hence of

|pk| =

{
λ
8 +

⌈
5m
8

⌉
bytes for q = 31

λ
8 +m bytes for q = 251

Secret key. The secret key is of the format sk := (seedeq, y, x); consisting of the same elements
as the public key, with the witness x which is a serialized vector x ∈ Fnq . Thus, the size of the
secret key is

|sk| =

{
λ
8 +

⌈
5m
8

⌉
+
⌈
5n
8

⌉
bytes for q = 31

λ
8 +m+ n bytes for q = 251

As all the existing public-key schemes, let us remark that we have an alternative definition of
the key generation in which the secret key would be seedroot, the seed from which (seedeq, y, x)
are derived. In that case, the size of the secret key would be of λ/8 bytes, but the signer would
need to recompute seedeq, y and x at each signature, increasing the running time of the signing
process. Moreover, the signature algorithm would be more sensitive to side-channel attacks.
We recommend to use this alternative only when the size of the secret key is critical.
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Signature size. The theoretical size (in bits) of a signature is:

Total Size = 2λ size of the salt.

+ 6λ size of h1, h2 and h3.

+ τ · (n · log2(q)) size of aux x[e] in view[e].

+ τ · ((2n1 − 1) · η · log2(q)) size of aux hint[e] in view[e].

+ τ · (n2 · η · log2(q)) size of plain br[e].

+ τ · λ · log2(N) size of path[e] in view[e].

+ τ · 2λ size of com[e][i∗[e]].

+ τ · 2λ size of com′[e] in view[e].

Given our encoding on field elements, log2(q) should be replaced by 5 for q = 31 and by 8 for
q = 251. We obtain the following approximate sizes in bytes:

|σq=31| = λ+
5τ

8
·
(
n+ η · (2n1 + n2 − 1)

)
+
τ · λ · (log2N + 4)

8

and

|σq=251| = λ+ τ ·
(
n+ η · (2n1 + n2 − 1)

)
+
τ · λ · (log2N + 4)

8

4.6 Proposed instances

All the signature parameters are summarized in Table 6 and in Table 7. Table 6 gives the
parameters which are common to both variants while Table 7 gives the additional parameters.

Table 6: The MQ and MPC parameters of MQOM for NIST Security Categories I, III, and V.

Parameter
Sets

NIST Security MQ Parameters MPC Parameters

Category Bits q m = n N = 2D n1 n2 η τ

MQOM-L1-gf31-short I 143 31 49 256 5 10 10 20

MQOM-L1-gf31-fast I 143 31 49 32 5 10 6 35

MQOM-L1-gf251-short I 143 251 43 256 4 11 5 22

MQOM-L1-gf251-fast I 143 251 43 32 4 11 4 34

MQOM-L3-gf31-short III 207 31 77 256 6 13 11 30

MQOM-L3-gf31-fast III 207 31 77 32 6 13 7 51

MQOM-L3-gf251-short III 207 251 68 256 5 14 7 30

MQOM-L3-gf251-fast III 207 251 68 32 5 14 4 52

MQOM-L5-gf31-short V 272 31 106 256 6 18 10 42

MQOM-L5-gf31-fast V 272 31 106 32 6 18 8 66

MQOM-L5-gf251-short V 272 251 93 256 6 16 7 41

MQOM-L5-gf251-fast V 272 251 93 32 6 16 5 66
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Table 7: The key and signature sizes in bytes.

Parameter
Set

Sizes (in bytes)

pk sk Sig. Avg Sig. Max

MQOM-L1-gf31-short 47 78 6 348 6 352

MQOM-L1-gf251-short 59 102 6 575 6 578

MQOM-L1-gf31-fast 47 78 7 621 7 657

MQOM-L1-gf251-fast 59 102 7 809 7 850

MQOM-L3-gf31-short 73 122 13 837 13 846

MQOM-L3-gf251-short 92 160 14 257 14 266

MQOM-L3-gf31-fast 73 122 16 590 16 669

MQOM-L3-gf251-fast 92 160 17 161 17 252

MQOM-L5-gf31-short 99 166 24 147 24 158

MQOM-L5-gf251-short 125 218 24 926 24 942

MQOM-L5-gf31-fast 99 166 28 917 29 036

MQOM-L5-gf251-fast 125 218 29 919 30 092
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4.7 Benchmarks

Benchmarks for

• a reference implementation on an AVX2 machine are given in Table 8;

• an optimized implementation on an AVX2 machine are given in Table 9.

Table 8: Benchmark of reference implementation of the MQOM on an AVX2 machine. Tim-
ings were run on an Intel i7 at 3.8GHz while disabling Intel Turbo Boost.

Instance
KeyGen Sign Verify

ms cycles ms cycles ms cycles

MQOM-L1-gf251-fast 0.15 0.57M 3.80 14.42M 3.43 13.02M

MQOM-L3-gf251-fast 0.61 2.33M 10.17 38.58M 9.23 34.99M

MQOM-L5-gf251-fast 1.51 5.74M 24.48 92.82M 22.76 86.30M

MQOM-L1-gf31-fast 0.19 0.73M 5.42 20.54M 4.80 18.21M

MQOM-L3-gf31-fast 0.74 2.80M 16.26 61.67M 14.92 56.57M

MQOM-L5-gf31-fast 1.93 7.30M 43.85 166.29M 41.16 156.10M

MQOM-L1-gf251-short 0.17 0.65M 12.83 48.64M 12.37 46.91M

MQOM-L3-gf251-short 0.63 2.40M 25.71 97.50M 24.53 93.03M

MQOM-L5-gf251-short 1.52 5.75M 55.68 211.15M 53.78 203.95M

MQOM-L1-gf31-short 0.20 0.74M 14.67 55.63M 13.86 52.57M

MQOM-L3-gf31-short 0.75 2.86M 34.71 131.62M 32.96 124.99M

MQOM-L5-gf31-short 1.92 7.28M 74.07 280.87M 71.04 269.38M

Table 9: Benchmark of optimized implementation of the MQOM on an AVX2 machine.
Timings were run on an Intel i7 at 3.8GHz while disabling Intel Turbo Boost.

Instance
KeyGen Sign Verify

ms cycles ms cycles ms cycles

MQOM-L1-gf251-fast 0.13 0.48M 3.04 11.52M 2.68 10.16M

MQOM-L3-gf251-fast 0.52 1.96M 8.66 32.85M 7.80 29.58M

MQOM-L5-gf251-fast 1.27 4.83M 21.51 81.55M 19.93 75.58M

MQOM-L1-gf31-fast 0.17 0.65M 4.66 17.65M 4.10 15.54M

MQOM-L3-gf31-fast 0.65 2.46M 14.84 56.29M 13.51 51.25M

MQOM-L5-gf31-fast 1.68 6.38M 41.21 156.26M 38.56 146.20M

MQOM-L1-gf251-short 0.13 0.48M 7.52 28.51M 7.20 27.31M

MQOM-L3-gf251-short 0.52 1.98M 18.33 69.51M 17.29 65.56M

MQOM-L5-gf251-short 1.28 4.86M 39.03 148.00M 37.51 142.26M

MQOM-L1-gf31-short 0.18 0.67M 11.70 44.36M 11.00 41.72M

MQOM-L3-gf31-short 0.66 2.51M 28.52 108.13M 26.96 102.22M

MQOM-L5-gf31-short 1.65 6.24M 59.19 224.45M 56.33 213.61M

Benchmark Platform. Intel(R) Core(TM) i7-10700K CPU 3.80GHz. The scheme has been
compiled with Clang compiler (Apple clang version 14.0.0) with options

-O3 -flto -march=native.
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5 Security analysis

5.1 Proof of unforgeability

The MQOM signature scheme aims at providing unforgeability against chosen message attacks
(EUF-CMA). In this setting, the adversary is given a public key pk and they can ask an oracle
(called the signature oracle) to sign messages (m1, . . . ,mr) that they can select at will. The
goal of the adversary is to generate a pair (m,σ) such that m is not one of requests to the
signature oracle and such that σ is a valid signature of m with respect to pk.

Our security statement is based on the following assumptions:

• MQ hardness. Solving the considered MQ instance is (ϵmq, t)-hard for some (ϵmq, t)
which are implicit functions of the security parameter λ. Formally, any adversary A on
input a random MQ instance

(
{Ai}, {bi}, y

)
and running in time at most t has probability

at most ϵmq to output the solution x of the input instance.

• Secure pseudorandmness. The pseudorandmness generated by the extendable output
hash function (XOF) is indistinguishable from true randomness (provided that the input
seed has sufficient entropy). Formally, an adversary A running in time at most t has
advantage at most ϵprg in distinguishing the two following distributions:

D0 = {x← {0, 1}ℓmax} and D0 = {x ∈ {0, 1}ℓmax ← XOF(seed) | seed← S}

for any distribution S with at least λ bits of min-entropy and where ℓmax denotes the
maximum number of bits sampled from XOF with overwhelming probability (i.e. ignoring
negligible occurrence of long sequences due to rejection sampling).

• ROM. The hash functions Hash0, Hash1, Hash2, Hash3, Hash4 behaves as random oracles.
Formally, our security statement only holds in the random oracle model where the Hashi’s
are modelled as random oracles.

Under the above security assumptions, we get the following result:

Theorem 5.1. Let Hash0, Hash1, Hash2, Hash3, Hash4 be modelled as random oracles, and
let p1, p2 be the probabilities from Theorem 2.1. Let A be an adversary against the EUF-CMA
security of the scheme running in time t and making a total of qi queries to Hashi for i ∈
{1, 2, 3, 4} and qsign queries to the signing oracle. Under the above assumptions, A’s advantage
in the EUF-CMA game is upper-bounded as

ϵeuf-cma ≤ ϵmq + ϵprg +
cst · (q1 + q2 + q3 + q4 + qsign)2

22λ
+ Pr[X + Y + Z = τ ],

for some constant cst (which depends on the parameters N and τ) and with

– X = maxi∈[1:q1]{Xi} with Xi ∼ B (τ, p1) ,

– Y = maxi∈[1:q2]{Yi} with Yi ∼ B (τ −X, p2) ,

– Z = maxi∈[1:q3]{Zi} with Zi ∼ B
(
τ −X − Y, 1

N

)
,

where B (n0, p0) denotes the binomial distribution with n0 the number of trials and p0 the success
probability of each trial.

The proof of the above theorem is very similar to, and can be easily adapted from, the security
proof of the Banquet signature scheme [BDK+21].
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5.2 Attacks against MQ instances

The security of the MQOM signature scheme relies on the hardness to solve an instance of the
multivariate quadratic problem, since the secret key is a solution of the MQ instance represented
by the public key. There exists many algorithms to solve the MQ problem. Their complexity
depends on several parameters: the number n of unknowns, the number m of quadratic equa-
tions, the size q of the field, the characteristic of the field, and the number of solutions. The
optimal algorithm might vary depending on the values of these parameters.

We used the MQ estimator [BMS+22] to evaluate the computational costs of all the existing
algorithms. This tool takes the parameters (q,m, n) of an MQ problem and estimates the
running times (and the memory usage) of the most important classical algorithms. The current
best known algorithms all combine algebraic techniques with exhaustive search. We focus our
analysis on the three following algorithms:

• Hybrid-(F4/F5) [Fau99; Fau02]: the idea is to guess a set of k variables and then to solve
the resulting MQ system by running the F5 algorithm. The latter is an algorithm to
compute a Gröbner basis of an ideal of polynomial equations.

• FXL [CKP+00; BFS+13]: it consists in guessing a set of k variables and to check the
consistency of the resulting problem thanks to a Macaulay matrix at large enough degree.

• Crossbred [JV18]: the idea is to first perform some operations on the Macaulay matrix of
the given system, and only afterward to fix k variables.

The MQ estimator [BMS+22] takes two parameters as inputs:

• a real number w ∈ [2, 3] such that the complexity to multiply two n×n matrices is O(nw).

• a real number θ ∈ [0, 2] such that (log2 q)
θ is the ratio between the field operation com-

plexity and the bit complexity.

Regarding the complexity of the matrix multiplication, we set w as log2(7). The same choice
was made in MQ-DSS [CHR+20] and in the numerical results of the MQ estimator [BMS+22].
While there exist some algorithms with asymptotically smaller w, those algorithms have huge
constant factor. In practice, the best an adversary can hope is w = log2(7) obtained using
Strassen algorithm [Str69]. Moreover, we take θ = 2 as suggested in [BMS+22].

We only consider the MQ instances for which the number n of unknowns and the number
m of equations are the same (i.e. m = n), since they corresponds to the harder instances.
Indeed, adding more equations would provide information about the system, while having more
variables would enales us to reduce the instance by fixing some of them. Table 10 provides the
MQ estimator output for our selected MQ parameters for the three security categories.
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Table 10: Complexities of different attacks on our MQ instances.

Parameter
Set

MQ Parameters Algorithms

q m = n HybridF5 FXL Crossbred

MQOM-L1-gf31 31 49 164.2 142.8 143.9

MQOM-L1-gf251 251 43 168.9 144.4 151.6

MQOM-L3-gf31 31 77 244.6 207.6 232.6

MQOM-L3-gf251 251 68 251.4 209.8 262.1

MQOM-L5-gf31 31 106 326.9 276.2 325.8

MQOM-L5-gf251 251 93 334.9 274.1 369.3

5.3 Signature forgery attacks

While applying the Fiat-Shamir transform to a zero-knowledge proof of knowledge (ZK-PoK)
with several rounds and parallel repetitions, one gets a security drop between the soundness of
the ZK-PoK and the unforgeability of the signature scheme. Namely, the forgery cost is lower
than 1

ε , where ε is the soundness error of the original ZK-PoK. The best forgery attack against
Fiat-Shamir-based schemes with several parallel executions (τ > 1) is the attack from [KZ20].
The latter is described for a 5-round scheme, but it can be easily generalized for any scheme
with more rounds. The attack works as follows:

1. The adversary chooses an attack strategy. It consists to choose three non-negative integers
τ1, τ2, τ3 such that τ = τ1 + τ2 + τ3.

2. For each forgery attempt, they generate cheating commitments (i.e. which do not corre-
spond to a correct witness) which for each repetition fool the MPC protocol with proba-
bility p1 in round 1 (commitment – challenge 1) and probability p2 in round 2 (response
– challenge 2), where p1, p2 are as defined in Theorem 2.1. They repeat this step until the
MPC protocol is fooled in round 1 for τ1 repetitions among τ . Since the probability that
a cheating commitment fools the MPC protocol w.r.t. a random first challenge (expanded
from h1) is p1 for one repetition, the probability to get τ1 fooled repetitions is

PMF(τ, τ1, p1) := Pr

 fool at least τ1 of the τ

repetitions in round 1 with

unitary probability of p1

 =
τ∑

k=τ1

(
τ

k

)
pk1(1− p1)τ−k .

Thus this step is repeated 1
PMF(τ,τ1,p1)

times in average. We denote I1 ⊆ [1 : τ ] the set of
indices of the fooled repetitions for a forgery attempt successfully passing this step.

3. For a forgery attempt successfully passing the previous step, the adversary tries different
round-2 responses to the first challenge generated from h1. Each response attempt gives
rise to a different hash h2 and corresponding random round-2 challenge which can be
fooled with probability p2 for each repetition. This step is repeated until the generated
challenge is fooled for τ2 repetitions among [1 : τ ] \ I1. The probability to succeed for one
round-2 response attempt is

PMF(τ − τ1, τ2, p2) =

τ−τ1∑
k=τ2

(
τ − τ1
k

)
pk2(1− p2)τ−τ1−k .
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Thus this step is repeated 1
PMF(τ−τ1,τ2,p2) times in average. We denote I2 ⊆ [1 : τ ] \ I1 the

set of indices of the fooled repetitions for a forgery attempt successfully passing this step.

4. Finally, the adversary guesses the unopened parties’ indexes in round 3 for the remaining
repetitions e ∈ [1 : τ ]\(I1 ∪ I2) (the repetitions which have not been fooled yet). They
generate the round-3 responses accordingly, i.e. cheating on the guessed non-opened
party only and such that the broadcast shares pass the verification (i.e. correspond to
v = 0).They repeat this step until the guess is correct, which happens with probability(

1

N

)τ−τ1−τ2
.

Thus this last step is repeated N τ−τ1−τ2 times in average.

The forgery cost of this attack corresponds to the cost of the optimal strategy, namely

costforge = max
τ1,τ2,τ3:τ=τ1+τ2+τ3

{
1

PMF(τ, τ1, p1)
+

1

PMF(τ − τ1, τ2, p2)
+N τ3

}
, (13)

where p1 and p2 are defined in Theorem 2.1. In practice, the parameters in Table 6 have
been chosen such that the associated forgery cost is at least of 2128 for Category I, of 2192

for Category III and of 2256 for Category V. We stress that here a forgery cost of 2λ means
computing more than 2λ hashes, which is relevant with respect to the definition of Categories I,
II and V (assuming that a hash computation is comparable or superior to an AES computation
in gate count).
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6 Advantages and limitations

Bad news first, the MQOM signature scheme suffers the following limitations:

• Relatively slow: As other MPCitH based scheme, MQOM is relatively slow, with signing
and verification time ranging between 10 · 106 and 45 · 106 cycles (2.7 – 11.7 ms on Intel i7
3.8 GHz processor) for NIST security category 1. This is slow compared to lattice-based
signatures. One of the reason is the greedy use of symmetric cryptography, notably (output
extendable) hashing, which let room from drastic improvement on platform supporting
hashing in hardware.

• Relatively large signatures: Compared to lattice-based signature or post-quantum sig-
natures based on the hash-and-sign paradigm, MPCitH-based signatures such as MQOM
have larger sizes. But in comparison to several hash-and-sign schemes, things are different
if we further count the size of the public key (as stressed hereafter).

• Quadratic growth in the security level: As other MPCitH-based signature schemes,
or, more generally, as other schemes applying the Fiat-Shamir transform to a parallelly
repeated ZK-PoK with non-negligible soundness error, MQOM suffers a quadratic growth
of the signature size. In practice, the size of MQOM signatures roughly doubles while
going from Category I to Category III and while going from Category III to Category V
as well.

On the other hand, MQOM benefits of the following advantages:

• Conservative hardness assumption: Being generic, the MPCitH approach can be
applied to any problem on does not rely on structured problems to introduce a trapdoor.
MQOM benefits this by relying on a full random instance of the MQ problem which is
believe to be a conservative hardness assumption.

• Small (public) keys: Thanks to the unstructured feature of the MQ instance, it can be
mostly derive from a random seed. Hence the public key is only composed of a λ-bit seed
and the relatively-short output y of the MQ system. The secret key additionally includes
the relatively-short input x of the MQ system (which can further be fully compressed as
the root seed of the key generation).

• Highly parallelizable: As other schemes based on the MPCitH paradigm, MQOM is
highly parallelizable. Most of the computation can be done in parallel for the τ rep-
etitions and computation can be further parallelized inside a repetition (D(+1) party
computations, seed trees and commitments).

• Good public key + signature size: As other schemes based on the MPCitH paradigm,
MQOM achieves a good score in terms of “public key + signature size” metric compared
to other candidate post-quantum signature schemes which are not based on lattices.

• Relatively small signatures: MPCitH-based signature schemes in the literature (at
time of writing) have signature sizes ranging on 5–10 KB (for 128-bit of security). MQOM
is on the lower side of this range, with 6.3–6.6 KB. Moreover, MPCitH-based signatures
achieving lower sizes are based on arguably less conservative assumptions such as e.g.
recent dedicated symmetric designs or rank metric problems (MinRank, Rank Syndrome
Decoding).
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