
MQOM: MQ on my Mind

Algorithm Specifications and Supporting

Documentation (Version 2.1)

Ryad Benadjila Charles Bouillaguet Thibauld Feneuil

Matthieu Rivain

September 22, 2025

CryptoExperts, Sorbonne Université

Contents

1 Introduction 2

2 Description of the MQOM signature scheme 3
2.1 Overview . 3

2.1.1 MQ problem . 3
2.1.2 MQOM polynomial IOP . 4
2.1.3 Line commitment scheme . 7
2.1.4 Compilation to signature scheme . 10

2.2 Notations . 14
2.3 Data representation . 16
2.4 Main algorithms . 18

2.4.1 Key generation . 18
2.4.2 Signing . 19
2.4.3 Verification . 20

2.5 Subroutines . 21
2.5.1 Arithmetic routines . 21
2.5.2 Batch line commitment routines . 23
2.5.3 GGM tree routines . 27
2.5.4 Seed processing routines . 29
2.5.5 Symmetric primitives . 30
2.5.6 Bit manipulation . 31

3 MQOM instances 32
3.1 Parameter selection . 32
3.2 Key and signature sizes . 33
3.3 Proposed instances . 34
3.4 Benchmarks . 37

3.4.1 Benchmarks on x86 platforms . 37
3.4.2 Benchmarks on embedded platforms . 42

4 Security 47
4.1 Unforgeability . 47
4.2 Attacks against MQ instances . 47

4.2.1 Tools and building blocks . 48
4.2.2 Solving polynomial systems over “large” finite fields 51
4.2.3 Special case of Boolean systems . 55

5 Design choices 61
5.1 Threshold-Computation-in-the-Head . 61
5.2 GGM trees . 63
5.3 Grinding . 65
5.4 Symmetric primitives . 66

6 Advantages and limitations 67

MQOM: MQ on my Mind 1

Changelog

2025-09-22: Version 2.0 → Version 2.1

We have replaced the field-embedding batching with the packing strategy. While both ap-
proaches are syntactically equivalent from a security perspective, packing allows us to shift the
arithmetic overhead from F to K. We have also updated the definition of the evaluation do-
main Ω: instead of relying on field elements ordered lexicographically, we now use Gray code,
which improves the efficiency of the folding step. Although these two changes do not affect the
security analysis of the scheme, they modify the structure of the public key and the signature.
Consequently, the known answer tests have been updated.

We have also introduced a new scheme variant whose security relies on the hardness of solving
the multivariate quadratic problem over the field F16. In contrast, the previous variants relied
on F2 and F256. This new variant offers both competitive signature sizes and running times:
the F2 variant suffers from limited computational performance, while the F256 variant incurs
relatively large signature sizes.

Finally, we have provided benchmark results for new highly-optimized implementations tar-
geting both x86 platforms and embedded devices.

2 MQOM: MQ on my Mind

1 Introduction

MQOM (MQ-On-my-Mind) is a signature scheme derived from a zero-knowledge proof-of-
knowledge of a secret solution to a random MQ instance. This zero-knowledge proof leverages
the MPC-in-the-Head (MPCitH) paradigm [IKO+07] and is converted into a signature scheme
using the Fiat-Shamir heuristic. This document specifies MQOMv2, the second version of the
MQOM signature scheme, a second round candidate to the NIST call for additional digital
signature schemes for the post-quantum cryptography standardization process [NIS22].
The proof system in MQOMv2 builds upon the Threshold-Computation-in-the-Head (TCitH)

framework [FR23b]. Like the proof system in MQOMv1 [FR23a; BFR24], this framework trans-
forms an MPC protocol into a zero-knowledge proof-of-knowledge via the MPCitH paradigm,
while committing to secret sharings using GGM seed trees (as first proposed in [KKW18]).
However, the TCitH framework utilizes threshold (Shamir) secret sharing instead of additive
secret sharing. This shift reduces the computational cost of MPC emulation and enables the
exploitation of multiplication homomorphism, offering significant performance improvements.
The TCitH proof system in MQOMv2 can also be interpreted as a variant of VOLE-in-the-
Head [BBD+23], where small VOLE correlations are directly applied in parallel repetitions,
rather than being combined into a larger VOLE correlation.
By transitioning from the original MPCitH proof system (relying on additive secret sharing)

to the TCitH proof system, the size of MQOM signatures has been roughly halved. In particular,
for Category I, MQOMv2 achieves signatures of 2.8–4.2 KB against 6.3–7.9 KB for MQOMv1.
Unless otherwise specified, MQOM should refer to MQOMv2 in the rest of this documentation.

Organization of the document. Section 2 gives an overview of the MQOM signature scheme
as well as a detailed description of the key generation, signature and verification algorithms
and their underlying subroutines. Section 3 explains the selection of parameters and depicts
the proposed instances and their performances. Section 4 provides a security analysis of the
MQOM signature scheme. Section 5 discusses the design choices of MQOM, while Section 6
addresses its advantages and limitations.

MQOM: MQ on my Mind 3

2 Description of the MQOM signature scheme

2.1 Overview

The Threshold-Computation-in-the-Head (TCitH) framework specializes the MPC-in-the-Head
paradigm with threshold (Shamir) secret sharing [FR23c; FR23b]. In this framework, the prover
commits to a Shamir secret sharing JxK of the secret value x and simulates an MPC protocol to
verify the validity of x (e.g., as the solution to a public MQ instance). During this process, the
prover reveals the publicly broadcast sharings JαK to the verifier. The verifier, in turn, checks
certain properties of JαK to assess the validity of x and finally challenges the prover to open
specific parties to verify the correctness of the MPC simulation. The TCitH framework is closely
related to the VOLE-in-the-Head (VOLEitH) framework [BBD+23], where the prover commits
to VOLE correlations of the form x · ∆ + rx (for a random rx). The prover then executes a
protocol that computes and transmits to the verifier VOLE correlations of the form α ·∆+ rα
(analogous to the broadcast sharings JαK), before ultimately revealing x ·∆+ rx for a challenge
value of ∆.
Both frameworks can be interpreted as composing of a polynomial interactive oracle proof

(polynomial IOP or PIOP) and a (zero-knowledge) polynomial commitment scheme (PCS), an
increasingly common approach in the design of proof systems [SZ22; Tha23]. In the case of
TCitH, committing to a Shamir secret sharing JxK corresponds to committing to the underlying
polynomial Px. Revealing a share JxKi is equivalent to disclosing an evaluation Px(ωi). Similarly,
VOLEitH commits to a VOLE correlation, which corresponds to a degree-1 polynomial Px(∆) =
x ·∆+ rx, with the prover later revealing an evaluation of this polynomial.
This section provides an overview of the MQOM signature scheme and the underlying TCitH-

Πpc proof system [FR23b] within the PIOP+PCS formalism. We begin by recalling the def-
inition of the MQ problem. Next, we introduce the PIOP and PCS components that define
the MQOM zero-knowledge proof of knowledge (ZK PoK). Finally, we discuss the compilation
of this ZK PoK into the MQOM signature scheme using parallel repetitions, the Fiat-Shamir
transform, and additional optimizations.

2.1.1 MQ problem

We recall the definition of the MQ problem (in matrix form) which is the core hardness assump-
tion of the MQOM signature scheme.

Definition 1 (Multivariate Quadratic Problem). Let F be a finite field and let m,n be positive
integers. The Multivariate Quadratic (MQ) problem with parameters (F,m, n) is the following
problem:

Let (Ai)i∈[m], (bi)i∈[m], x and y = (y1, . . . , ym) be such that:

1. x is uniformly sampled from Fn,

2. for all i ∈ [m], Ai is uniformly sampled from Fn×n,

3. for all i ∈ [m], bi is uniformly sampled from Fn,

4. for all i ∈ [m], yi is defined as yi := x⊺Aix+ b⊺i x.

From
(
{Ai}, {bi}, y

)
, find x.

4 MQOM: MQ on my Mind

2.1.2 MQOM polynomial IOP

Formally, a PIOP is an interactive proof in which the prover can send a polynomial oracle
[P1, . . . , Pn] to the verifier for polynomials P1, . . . , Pn ∈ K[X] of prescribed degree d. From such
a polynomial oracle, the verifier can then query some evaluations. Namely, for a query r to the
oracle, the latter provides the verifier with the polynomial evaluations P1(r), . . . , Pn(r). The
verifier has the guarantee that some polynomials of degree d are embedded in the oracle and
that their evaluations in r match the oracle’s response.
In the MQOM PIOP, the prover aims to convince the verifier that they know an MQ solution

x ∈ Fn such that F (x) = (0, . . . , 0) ∈ Fm, where

F = (f1, . . . , fm) with fi : x 7→ x⊺Aix+ b⊺i x− yi . (1)

This protocol is the PIOP equivalent of the QuickSilver protocol [YSW+21] within the VOLE-in-
the-Head framework [BBD+23] or the Πpc MPC protocol within the TCitH framework [FR23b].

Packing. Let K be a degree-µ extension field of F. Let β1, . . . , βµ be an F-basis of K and let

ϕ : (e1, . . . , eµ) ∈ Fµ 7→
µ∑

i=1

ei · βi ∈ K .

be the associated F-linear field-embedding isomorphism.
The MQOM PIOP performs computation in the field extension K, and its efficiency depends

on the number of degree-2 constraints over K. The above constraint F (x) = 0 corresponds to m
degree-2 constraints over F. To reduce the number of constraints, we apply a packing technique
similar to that in [BBM+24]. Specifically, we define:

Â1 = ϕ(A1, . . . , Aµ) , . . . Âm̂ = ϕ(Am−µ+1, . . . , Am) ,

b̂1 = ϕ(b1, . . . , bµ) , . . . b̂m̂ = ϕ(bm−µ+1, . . . , bm) ,

ŷ1 = ϕ(y1, . . . , yµ) , . . . ŷm̂ = ϕ(ym−µ+1, . . . , ym) ,

with m̂ = m/µ (assuming m is a multiple of µ). Instead of proving that x ∈ Fn satisfies
F (x) = (0, . . . , 0), the MQOM PIOP proves that x satisfies F̂ (x) = (0, . . . , 0) ∈ Km̂, where

F̂ = (f̂1, . . . , f̂m̂) with f̂i : x 7→ x⊺Âix+ b̂⊺i x− ŷi . (2)

By F-linearity of ϕ, this new statement is strictly equivalent to the original one, but it involves
m̂ = m/µ degree-2 constraints over K instead of m degree-2 constraints over F. To avoid
repeated conversions, MQOM key generation outputs the MQ instance directly in packed form
(Âi, b̂i, ŷi)i∈[m̂], and the signing and verification algorithms operate exclusively on this packed
representation.

Notions. Let Ω ⊆ K an evaluation domain (i.e. the points on which the polynomial oracle
can be queried). We denote K[X]⩽d the set of polynomials of degree ≤ d with coefficients in K
and we shall consider vector polynomials, which are vectors with polynomial coordinates. We
consider the homogeneous application of F̂ to a degree-1 vector polynomial P ∈

(
K[X]⩽1

)n
,

which results in a degree-2 vector polynomial F̂ (P) ∈
(
K[X]⩽2

)m̂
such that

F̂ (P)(X) = (P (X)⊺ÂiP (X) + b̂⊺iP (X) ·X − ŷi ·X2)i .

MQOM: MQ on my Mind 5

We shall denote by P (∞) ∈ Kn the leading coefficient vector of a vector polynomial P . In
particular, for P ∈ K[X]⩽1, P (∞) denotes the degree-1 coefficient vector, while for F̂ (P) ∈
K[X]⩽2, F̂ (P)(∞) denotes the degree-2 coefficient vector. For some vector polynomial Px ∈(
K[X]⩽1

)n
such that Px(∞) = x, we thus obtain F̂ (P)(∞) = F̂ (x), which is the all-0 vector if

and only if x is the MQ solution associated to F (and F̂).

PIOP: simple version. We start with a simplified version of the PIOP underlying MQOM,
which is depicted in Figure 1. The prover first picks random vector polynomials Px ∈

(
K[X]⩽1

)n
and Pu ∈

(
K[X]⩽1

)m̂
such that Px(∞) = x (while Pu is fully random). Then they send an oracle

to these polynomials to the verifier. The prover further computes Pα = Pu + F̂ (Px) and sends
it in clear (i.e. not as an oracle) to the verifier. The verifier samples a random point r in the
evaluation domain Ω and queries the oracle to obtain the evaluations Px(r), Pu(r). They finally
check that Pα(r) = Pu(r) + F̂ (Px(r)).

Prover Verifier

Px ←
(
K[X]⩽1

)n
s.t Px(∞) = x

Pu ←
(
K[X]⩽1

)m̂
[Px,Pu]−−−−−−−−−−−−→

Pα = Pu + F̂ (Px) ∈
(
K[X]⩽1

)m̂
Pα−−−−−−−−−−−−→

r ← Ω ⊆ K
Query Px(r), Pu(r) from [Px, Pu]

Check Pα(r) = Pu(r) + F̂ (Px(r))

Figure 1: Polynomial IOP underlying MQOM (simple version).

The vector polynomial Pz := F̂ (Px) is of degree 1 if and only if Pz(∞) = F̂ (Px(∞)) =
(0, . . . , 0) ∈ Km̂, meaning that x = Px(∞) is a valid solution to the MQ instance defined by
F . The soundness of this protocol follows from the Schwartz–Zippel lemma. Assume that
Pα(r) = Pu(r) + F̂ (Px(r)) holds for 3 different points r ∈ Ω, then because Px, Pu, Pα are
guaranteed to be of degree 1, we must have Pα = Pu + F̂ (Px) and hence F̂ (x) = 0 (i.e. the
prover indeed knows a solution x). Conversely, in the presence of a malicious prover (who does
not know a correct solution x), we can only have Pα(r) = Pu(r) + F̂ (Px(r)) for at most two
values r of Ω. The soundness error of the PIOP is hence of 2/|Ω|.
The zero-knowledge property of this protocol holds for two reasons. First, thanks to the

addition of the random vector polynomial Pu, the vector polynomial Pα is further uniformly
random. Then, any evaluations Px(r), Pu(r) are independent of x thanks to the randomness
involved in these polynomials.

Remark 1. The original TCitH-Πpc protocol does not encode the secret x as the leading coef-
ficient of Px but as its constant term (as for the original Shamir’s secret sharing). While this
choice neither impacts the soundness nor the communication, choosing the leading term has
some advantages in terms of computation (see Section 5 for further discussion).

Besides the polynomial oracle, the communication cost of the above PIOP is the size of Pα

which is made of 2m̂ elements of the extension field K. We now describe a method to batch the
coordinates of Pα, enabling to lower this communication cost.

6 MQOM: MQ on my Mind

Batching with random combinations. To reduce the size of Pα, we can use the standard
approach to batch the verification of several relations using random linear combinations. In our
context, this means batching the m̂ coordinates of F̂ (Px) into η random linear combinations
for some parameters η ∈ N. Let Γ ∈ Kη×m̂ be a matrix randomly sampled by the verifier. The
prover now defines Pα as:

Pα = Pu + Γ · Pz ∈
(
K[X]⩽1

)η
with Pu ∈

(
K[X]⩽1

)η
and Pz = F̂ (Px) ∈

(
K[X]⩽1

)m̂
. We then have:

Pr
[
Γ · Pz(∞) = (0, . . . , 0) | Pz(∞) ̸= (0, . . . , 0)

]
≤ 1

|K|η
.

For a target λ-bit security, selecting η := ⌈λ/ log2 |K|⌉ makes the above soundness error ≤ 2−λ.

PIOP: full version. Figure 2 provides the description of the PIOP integrating the optional
batching strategy. When the batching is disabled, the PIOP skips the step of sampling Γ by
the verifier and sending it to the prover (represented between dashed lines on Figure 2). Γ is
then simply defined as the identity matrix Γ = Iη ⊆ Kη×η with η = m̂.

Prover Verifier

Px ←
(
K[X]⩽1

)n
s.t Px(∞) = x

Pu ←
(
K[X]⩽1

)η
[Px,Pu]−−−−−−−−−−−−→

Γ← Kη×m̂

Γ←−−−−−−−−−−−−

Pz = F̂ (Px) ∈
(
K[X]⩽1

)m̂
Pα = Pu + Γ · Pz ∈

(
K[X]⩽1

)η
Pα−−−−−−−−−−−−→

r ← Ω ⊆ K
Query Px(r), Pu(r) from [Px, Pu]

Compute Pz(r) = F̂ (Px(r))

Check Pα(r) = Pu(r) + Γ · Pz(r)

Figure 2: Polynomial IOP underlying MQOM (full version).

Disabling random-combination batching makes theMQOM zero-knowledge proof-of-knowledge
a simple sigma protocol. This comes at a moderate communication cost (depending of the pa-
rameters) thanks to the packing strategy which significantly reduces the communication over-
head in the context. On the other hand, when random-combination batching is enabled, the
main purpose of the packing is to reduce the computation overhead. More precisely, we could
replace F̂ by F and sample a larger matrix Γ ∈ Kη×m. While this would not change the com-
munication or the soundness of the PIOP, this would make sampling Γ as well as computing
the product Γ · Pz heavier.

MQOM: MQ on my Mind 7

2.1.3 Line commitment scheme

To compile the above polynomial IOP into a zero-knowledge proof of knowledge (ZK-PoK), the
polynomial oracle is replaced by a polynomial commitment scheme. This means that the prover
sends a commitment Com(Px, Pu) to the polynomials Px, Pu in place of the oracle. Later on,
the query from the verifier to the oracle is replaced by an evaluation opening protocol:

1. the verifier sends the evaluation point r to the prover,

2. the prover replies with evaluations vx = Px(r), vu = Pu(r) along with an opening proof π,

3. the verifier checks π and, in case of success, accepts vx, vu as valid evaluations.

The commitment scheme should be:

• binding : the commitment Com(Px, Pu) defines unique polynomials Px, Pu and it should
be hard for a mallicious prover to later come up with evaluations vx, vu and an opening
proof π passing the verification while vx ̸= Px(r) or vu ̸= Pu(r);

• hiding/zero-knowledge: the verifier does not learn anything more than vx, vu about Px, Pu.

In the context of this specification, the polynomials Px and Pu are limited to be of degree 1.
In consequence, we shall use the terminology of line commitment scheme. We explain the line
commitment scheme used in MQOM hereafter. This construction relies on a GGM seed tree.

GGM seed tree. A GGM seed tree consists in pseudorandomly expanding a root seed rseed

into N leaf seeds lseed[0], . . . , lseed[N − 1] using a binary tree. The process is summarized
by {

node[1]← rseed

(node[2i], node[2i+ 1])← SeedDerive(node[i]) for 1 ≤ i ≤ N − 1
(3)

where SeedDerive is a seed derivation function. The leaf seeds are then defined as the last N
nodes, namely lseed[i] := node[N + i] for all i ∈ [0, N − 1]. The structure of a GGM seed
tree and underlying node numbering are illustrated on Figure 3. In the scope of the present
specification, the number of leaves N is always a power of two.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

root seed

leaf seed 0 leaf seed 7…leaf seed 1

Figure 3: GGM tree structure and node numbering.

The GGM tree structure enables to reveal all-but-one leaf seeds from log2(N) nodes of the
tree. Let i∗ ∈ [0, N − 1] be the index of the leaf seed that should remain hidden. Any node on

8 MQOM: MQ on my Mind

the path from the hidden leaf lseed[i∗] = node[N + i∗] to the root of the tree should remain
hidden (since lseed[i∗] can be derived from any of those nodes). The indexes of the node on
this hidden path belong to the following set:

H = {⌊(N + i∗)/2j⌋ | 0 ≤ j ≤ log2(N)− 1} .

On the other hand, the sibling path, which is made of the siblings of the hidden nodes, can be
revealed without giving any information lseed[i∗]. According to the binary tree structure, the
sibling of node[i] is node[i⊕ 1]. The sibling path of lseed[i∗] is hence defined as:

path = {node[i⊕ 1] | i ∈ H} .

By running the tree derivation of Equation 3 from all the seeds in the sibling path, one recon-
structs a partial tree composed of all the nodes but the hidden path. In particular, this partial
tree includes all the leaves but the hidden leaf lseed[i∗].
GGM seed trees have been introduced in the context of MPC-in-the-Head to commit additive

secret sharings with efficient opening of all-but-one shares [KKW18]. From a random root seed
rseed, one expands a GGM seed tree to obtain the leaf seeds lseed[0], . . . , lseed[N − 1].
Then, each leaf seed is expanded into a share:

x̄i ∈ Fn ← PRG(lseed[i]) ,

and a correction value ∆x is defined as:

∆x = x−
N−1∑
i=0

x̄i . (4)

By definition, (x̄0 + ∆x), x̄1, . . . , x̄N−1 forms an additive secret sharing of x. This additive
sharing is committed by deriving a commitment for each seed:

ls com[i]← SeedCommit(lseed[i])

and sending a global commitment:

com← Commit(ls com[0], . . . , ls com[N − 1],∆x)

to the verifier. Later on, the verifier can challenge the prover to open all the additive shares of
x but one, say the share of index i∗. The prover then reveals the sibling path of lseed[i∗], the
correction value ∆x and the commitment ls com[i∗]. From all the leaf seeds (but lseed[i∗]),
the verifier can expand all the shares x̄i (but x̄i∗) and correct x̄0 with ∆x. The verifier can also
recompute the commitments ls com[i], for all i ̸= i∗, and together with lseed[i∗] and ∆x,
recompute and check the global commitment.

Line commitment from GGM seed tree. As described in the TCitH framework [FR23b],
one can use a sharing conversion technique from [CDI05] to turn an all-but-one additive secret
sharing (a.k.a. replicated secret sharing) into a Shamir’s secret sharing, with underlying poly-
nomial Px encoding x. Then, revealing all-but-one additive shares of x amounts to revealing
one Shamir’s share of x, i.e., one evaluation of the polynomial Px. A similar technique was also
previously described in the VOLE-in-the-Head framework [BBD+23] to commit small VOLE
correlations based on the small-field VOLE construction from [Roy22].

MQOM: MQ on my Mind 9

The committed degree-1 polynomial (or line) is defined as:

Px = ∆xP0 +
N−1∑
i=0

x̄iPi ∈ K[X]⩽1 (5)

where P0, . . . , PN−1 ∈ K[X]⩽1 are fixed degree-1 polynomials defined as:{
Pi(ωi) = 0

Pi(∞) = 1
(6)

for some predefined evaluation points Ω = {ω0, . . . , ωN−1} ⊆ K. From this definition, we have
that Px encodes the secret x by:

Px(∞) = ∆x +
N−1∑
i=0

x̄i = x .

Moreover, the evaluation of Px in a point ωi∗ ∈ Ω can be derived from the all-but-one additive
sharing of index i∗. Namely, from all the x̄i but x̄i∗ , the verifier can recompute:

Px(ωi∗) = ∆xP0(ωi∗) +

N−1∑
i=0

x̄iPi(ωi∗) = ∆xP0(ωi∗) +
∑
i ̸=i∗

x̄iPi(ωi∗)

where the above equality holds because Pi∗(ωi∗) = 0. Since any other evaluation of Px would
require the knowledge of x̄i∗ , the verifier only learns Px(ωi∗) from the all-but-one opening.

Following Equation 5 and Equation 6, and assuming ω0 = 0, we have Pi(X) = X − ωi for all
i ∈ [0, N − 1], and:

Px(X) = x ·X −
N−1∑
i=0

ωi · x̄i .

Remark 2. As mentionned in Remark 1, the original TCitH scheme [FR23b] does not encode
the secret x as Px(∞) but as Px(0) (as in the original Shamir’s secret sharing). For this reason,
the Pi polynomials are defined such that Pi(ωi) = 0 and Pi(0) = 1 in [FR23b]. In the present
specification, we choose to encode x in Px(∞) which offers some advantages, as discussed in
Section 5.

Committing the random polynomial Pu works the same way but without correction value.
Namely, the additive shares ūi ∈ Kη are also pseudorandomly sampled from the leaf seeds
lseed[i] for all i ∈ [0, N − 1] and Pu is defined as:

Pu(X) =

N−1∑
i=0

ūiPi =
(N−1∑

i=0

ūi

)
·X −

N−1∑
i=0

ωi · ūi ∈
(
K[X]⩽1

)η
.

Correlated tree optimization. The correlated half-tree technique introduced in [GYW+23]
enables to slightly reduce the communication cost of a GGM all-but-one sharing commitment.
For a fixed δ ∈ {0, 1}λ (where {0, 1}λ is the definition space of the seeds), the correlated tree
technique maintains the following invariant. At any given level in the tree, the XOR of all the
seeds equal δ. To enforce this property, the definition of the tree is modified as follows:{

node[2]← rseed

node[3]← rseed⊕ δ
and

{
node[2i]← SeedDerive(node[i])

node[2i+ 1]← node[2i]⊕ node[i]

10 MQOM: MQ on my Mind

for 1 ≤ i ≤ N − 1. One can indeed check that, for any j ≥ 1, we thus get:

δ = node[2]⊕ node[3]

= node[4]⊕ node[5]⊕ node[6]⊕ node[7]

...

=
2j+1−1⊕
i=2j

node[i] .

Then redefining:
x̄i ∈ Fn ← lseed[i] ∥ PRG(lseed[i]) ,

we get that the λ first bits of
∑N−1

i=0 x̄i equal δ (assuming that F is a binary field so that the
field addition matches the XOR). By defining δ as the λ first bits of x, Equation 4 then implies
that the λ first bits of ∆x equal 0λ (the all-0 λ-bit string). We can thus save λ bits in the
communication of ∆x.

Wrapping up. When plugging the above line commitment scheme into the PIOP of Figure 2,
we obtain theMQOM ZK PoK depicted in Figure 4. Note that this PoK is extractable knowledge
sound under an idealized assumption on the SeedCommit primitive (e.g. in the random oracle
or ideal cipher model). This leads to a tight EUF-CMA security since the reduction can extract
the secret from any valid commitment.

2.1.4 Compilation to signature scheme

The MQOM signature scheme is constructed in two steps: first, we amplify the soundness of
the MQOM ZK PoK (Figure 4) through parallel repetitions; then, we apply the Fiat-Shamir
transform to render it non-interactive and message-bound. In addition, we introduce some
tweaks to lower the signature size and improve security and performances.

Parallel repetitions. The MQOM ZK PoK (Figure 4) has round-by-round soundness with
soundness error ϵ1 = 1/|K|η for the (optional) batching round and ϵ2 = 2/|Ω| = 2/N for the
next round (see Section 2.1.2). To achieve a soundness error below 2−λ for a target security
of λ bits, η is fixed to η = λ/ log2 |K| (the result of this division is always an integer for
our considered parameters). For the next round, we rely on parallel repetitions. Namely, the
protocol is repeated τ times to make (2/N)τ sufficiently small.

Specifically, the considered line commitment is turned into a batch line commitment (BCL),

which commits τ pairs of polynomials (P
(0)
x , P

(0)
u), . . . , (P

(τ−1)
x , P

(τ−1)
u). For each of them, a

polynomial P
(e)
α = P

(e)
u + Γ · F̂ (P (e)

x) is computed and sent to the verifier, where (in case
of batching) the matrix Γ is the same for each repetition. The verifier then picks τ indexes
i∗[0], . . . , i∗[τ −1], each leading to an evaluation point r(e) ∈ Ω. The prover finally reveals the

opening data for the verifier to check and compute the evaluations P
(e)
x (r(e)), P

(e)
u (r(e)).

Concretely, the BCL scheme relies on τ parallel GGM trees, each giving rise to its own
set of leaf seeds (lseed[e][i])0≤i<N , corresponding commitments, (ls com[e][i])0≤i<N , and
correction value ∆x[e], for e ∈ [0, τ − 1]. The global commitment is then defined as:

com← Commit(c(0), . . . , c(τ−1),∆x[0], . . . ,∆x[τ − 1])

where c(e) ← Commit(ls com[e][0], . . . , ls com[e][τ −1]). Finally, the global opening consists
of the opening tuple (path[e],∆x[e], ls com[e][i∗[e]]) for each execution e ∈ [0, τ − 1].

MQOM: MQ on my Mind 11

Prover Verifier

rseed← {0, 1}λ

(lseed[i])0≤i<N ← GGM.Expand(rseed)

ls com[i]← SeedCommit(lseed[i]), ∀i ∈ [0, N − 1]

(x̄i, ūi)← PRG(lseed[i]), ∀i ∈ [0, N − 1]

∆x = x−
∑

i x̄i

Px = ∆xP0 +
∑

i x̄iPi

Pu =
∑

i ūiPi

com← Commit
(
(ls com[i])0≤i<N ,∆x

)
com−−−−−−−−−−−−→

Γ← Kη×m̂

Γ←−−−−−−−−−−−−

Pz = F̂ (Px) ∈
(
K[X]⩽1

)m̂
Pα = Pu + Γ · Pz ∈

(
K[X]⩽1

)η
Pα−−−−−−−−−−−−→

i∗ ← [0, N − 1]

r = ωi∗ ∈ Ω ⊆ K
i∗←−−−−−−−−−−−−

path← GGM.SiblingPath(rseed, i∗)

opening = (path,∆x, ls com[i∗])
opening−−−−−−−−−−−−→

(lseed[i])i ̸=i∗ ← GGM.Partial(rseed)

ls com[i]← SeedCommit(lseed[i]), ∀i ̸= i∗

com′ ← Commit
(
(ls com[i])0≤i<N ,∆x

)
Check com′ = com

(x̄i, ūi)← PRG(lseed[i]), ∀i ̸= i∗

Px(r) = ∆xP0(r) +
∑

i ̸=i∗ x̄iPi(r)

Pu(r) =
∑

i ̸=i∗ ūiPi(r)

Compute Pz(r) = F̂ (Px(r))

Check Pα(r) = Pu(r) + Γ · Pz(r)

Figure 4: MQOM zero-knowledge proof of knowledge.

Hash commitment of Pα. To reduce the communication of the ZK PoK protocol, a standard

optimization is to send a hash commitment of the polynomials P
(0)
α , . . . , P

(τ−1)
α instead of trans-

mitting them in full. Doing so, the prover only needs to send the leading coefficient α
(e)
1 ∈ Kη for

each of these polynomial rather than the full pair of coefficients (α
(e)
0 , α

(e)
1) ∈ (Kη)2. From the

open evaluations P
(e)
x (r(e)), P

(e)
u (r(e)), the verifier deduces P

(e)
α (r(e)) and computes a candidate

value for the constant term:
α
(e)
0 = P (e)

α (r(e))− α(e)
0 · r

(e) .

Finally, the verifier checks this against the hash commitment. This technique effectively halves

the communication cost (or signature footprint) associated with the polynomials P
(0)
α , . . . , P

(τ−1)
α .

Fiat-Shamir transform. In the following, we shall denote by com1 the BLC commitment and

com2 the hash commitment of the polynomials P
(0)
α , . . . , P

(τ−1)
α following the above optimization.

In the first (optional) round, the application of Fiat-Shamir consists in deriving the matrix

12 MQOM: MQ on my Mind

Γ ∈ Kη×m
µ from the commitment by a call to an extendable output hash function:

Γ← XOF(com1) .

In the second round, the application of Fiat-Shamir consists in deriving the challenge indexes
i∗[0], . . . , i∗[τ − 1] from the commitments com1 and com2. We further input the message as
well as the public key is this hash computation, which gives:

(i∗[0], . . . , i∗[τ − 1])← XOF(pk, com1, com2, msg) .

Grinding. To reduce the number of parallel repetitions, we employ grinding. Namely, we
include a w-bit proof-of-work increasing the number of iterations of the second hash by a factor
of 2w on average for a grinding parameter w. The number of repetitions is then relaxed to
satisfy (

2

N

)τ

≤ 1

2λ−w
, (7)

namely, we fix τ := ⌈(λ− w)/(log2(N)− 1)⌉.
The second Fiat-Shamir hash is then performed as follows. One first compute a hash value

hash← Hash(pk, com1, com2, msg)

and then iterates
(i∗, val)← XOF(hash, nonce)

where i∗ = (i∗[0], . . . , i∗[τ−1]) ∈ [0, N−1]τ , val ∈ [0, 2w−1], and nonce ∈ [0, 232−1] a 32-bit
counter. The above computation is repeated by increasing nonce until obtaining val = 0. The
succeeding nonce value is included into the signature so that the verifier only needs to run the
right XOF computation once. The verifier further checks that the XOF output satisfies val = 0
to accept the signature.
In the random oracle model (ROM), any attempt to forge a signature requires the adversary

to make a random oracle query to get the associated challenge i∗. Using grinding, each such
random oracle query has only a probability 2−w to yield a valid grinding value val = 0. As a
result, the (amplified) second-round soundness error scales from ϵ1 = (2/N)τ down to ϵ1 · 2−w

from which we get the relaxation of Equation 7. The reader is referred to [Sta21] for a formal
argument.

Seed derivation and commitment in GGM trees. The functions SeedDerive, SeedCommit,
and PRG are defined based on a block cipher:

Enc : (key, ptx) ∈ {0, 1}λ × {0, 1}λ 7→ ctx ∈ {0, 1}λ , (8)

which is instantiated as AES-128 (for λ = 128) or Rijndael-256-256 (for λ = 192 and λ = 256).
This choice ensures efficiency by leveraging the AES hardware instructions available on modern
CPUs.
For security, the derivation, commitment and expansion of seeds must incorporate a random

salt, which is sampled at the beginning of the signing process and included as part of the
signature. Since seeds are only λ bits long, using this salt mitigates the risk of collisions in tree
derivation and prevents accelerated exhaustive searches for hidden seeds. Additionally, this salt
is modified to enforce domain separation between different calls to SeedDerive and SeedCommit
within a single signature computation.

MQOM: MQ on my Mind 13

We employ a Davies-Meyer construction to transform the block cipher Enc into the seed
derivation and commitment primitives. Here, the salt acts as the key, while the seed is used
as the plaintext and also introduced in the output through a feed-forward mechanism. Given
the XOR-invariant properties of correlated GGM tree optimizations, a simple XOR-based feed-
forward would make the seed derivation process invertible. Instead, as suggested in [GKW+20],
we use a F2-linear orthomorphism ψ, defined as:

ψ : (xl ∥ xr) ∈ {0, 1}λ 7→ (xl ⊕ xr ∥ xl) . (9)

Concretely, we define encryption with feed-forward (EncFF) as follows:

EncFF : (seed, tweak) 7→ Enc(salt⊕ tweak, seed)⊕ ψ(seed) . (10)

This allows us to define the seed derivation function as:

SeedDerive(seed, tweak) = EncFF(seed, tweak) , (11)

and the seed commitment function as:

SeedCommit(seed, tweak) = EncFF(seed, tweak) ∥ EncFF(seed, tweak⊕ 1) . (12)

The domain-separator tweaks are defined to ensure security. For seed derivation, we assign
a unique tweak for each pair (e, j), where e ∈ [0, τ − 1] denotes the execution index, and
j ∈ [0, log2(N)− 1] represents the height of the current node in the tree. This guarantees that
any two seeds in the revealed sibling paths result from distinct derivation functions, preventing
accelerated preimage attacks. For commitment, we use a distinct pair (tweak, tweak ⊕ 1) per
execution index e ∈ [0, τ − 1] (and which are also disjoint from the seed derivation tweaks), en-
suring that hidden seed commitments are derived from separate commitment functions, thereby
thwarting accelerated preimage attacks.

14 MQOM: MQ on my Mind

2.2 Notations

Mathematical notations. We summarize the mathematical notations used in the algorithmic
description of MQOM in Table 1. The concrete instantiations of F and K, with underlying
irreducible polynomials, the evaluation points ω0, . . . , ωN−1, and the F-basis of K, β1, . . . , βµ,
are defined in Section 3.

Table 1: Mathematical notations.

F The base field, a finite field of characteristic 2

K The extension field, a finite extension of F
Ω = {ω0, . . . , ωN−1} The evaluation domain, a subset of K
{β1, . . . , βµ} An F-basis of K
F[X]⩽1 Set of polynomials of degree ≤ 1 with coefficients from F
K[X]⩽1 Set of polynomials of degree ≤ 1 with coefficients from K
ψ Linear orthomorphism ψ : {0, 1}λ → {0, 1}λ

| · |2 Bit-size of a field-element vector

| · |8 Byte-size of a field-element vector

Iη Identity matrix on Kη×η

0ℓ All-0 ℓ-bit string

We let ψ be the F2-linear orthomorphism defined as:

ψ : (xl ∥ xr) ∈ {0, 1}λ 7→ (xl ⊕ xr ∥ xl) . (13)

Notations for MQOM parameters. The notations for the various parameters of MQOM are
summarized in Table 2. The specific instantiations of these parameters, which define the differ-
ent instances of MQOM, are provided in Section 3.

Table 2: Parameters of the MQOM signature scheme.

MQ parameters:

F Base field

n Number of unknowns

m Number of equations

Proof system parameters:

λ Security parameter

µ Extension degree µ = [K : F]
m̂ Number of packed equations m̂ = m/µ

N Size of the evaluation domain N = |Ω|
η Number of internal repetitions of the proof system

τ Number of external repetitions of the proof system

w Grinding proof-of-work parameter

MQOM: MQ on my Mind 15

Notations for algorithmic description. The variables used in the algorithmic description of
MQOM, along with their respective definition domains, are summarized in Table 3.

Table 3: Notations of the MQOM signature scheme.

x Secret MQ solution Fn

Âi Quadratic-part matrix of the i-th MQ packed equation Kn×n

b̂i Linear-part vector of the i-th MQ packed equation Kn

ŷi Constant part of the i-th MQ packed equation K
seed key Master seed for key generation {0, 1}2λ

seed eq[i− 1] Seed for MQ equations {Âi}, {b̂i} {0, 1}2λ

com1 BLC commitment {0, 1}2λ

com2 Hash commitment com2 = Hash(α0, α1) {0, 1}2λ

key BLC opening key key = (node,∆x′) –

opening BLC opening opening = (path, out ls com,∆x′) –

i∗ Hidden-leaf indexes i∗ = (i∗[0], . . . , i∗[τ − 1]) [0, N − 1]τ

nonce Grinding nonce [0, 232 − 1]

val Grinding test value [0, 2w − 1]

batching Boolean for enabling / disabling the batching variant {True,False}
x0 Coefficient array x0 = (x0[0], . . . , x0[τ − 1])

(
Kn
)τ

u0 Coefficient array u0 = (u0[0], . . . , u0[τ − 1])
(
Kη
)τ

u1 Coefficient array u1 = (u1[0], . . . , u1[τ − 1])
(
Kη
)τ

α0 Coefficient array α0 = (α0[0], . . . , α0[τ − 1])
(
Kη
)τ

α1 Coefficient array α1 = (α1[0], . . . , α1[τ − 1])
(
Kη
)τ

x eval Evaluation array x eval = (x eval[0], . . . , x eval[τ − 1]) (Kn)τ

u eval Evaluation array u eval = (u eval[0], . . . , u eval[τ − 1]) (Kη)τ

mseed Signature master seed {0, 1}λ

salt Signature salt {0, 1}λ

rseed Array rseed = (rseed[0], . . . , rseed[τ − 1]) –

rseed[e] GGM root seed for execution e {0, 1}λ

lseed Array lseed = (lseed[0], . . . , lseed[τ − 1]) –

lseed[e] Array lseed[e] = (lseed[e][0], . . . , lseed[e][N − 1]) –

lseed[e][i] Leaf seed of index i for execution e {0, 1}λ

ls com Array ls com = (ls com[0], . . . , ls com[τ − 1]) –

ls com[e] Array ls com[e] = (ls com[e][0], . . . , ls com[e][N − 1]) –

ls com[e][i] Leaf seed commitment of index i for execution e {0, 1}2λ

node Array node = (node[0], . . . , node[τ − 1]) –

node[e] Array node[e] = (node[e][2], . . . , node[e][2N + 1]) –

node[e][j] Node seed of index j for execution e {0, 1}λ

path Array path = (path[0], . . . , path[τ − 1]) –

path[e] Array path[e] = (path[e][0], . . . , path[e][log2(N)− 1]) –

path[e][j] Sibling-path seed of index j (from leaf to root) for execution e {0, 1}λ

exp[e][i] Expanded leaf seed {0, 1}|x|2+|u|2−λ

16 MQOM: MQ on my Mind

2.3 Data representation

The elementary data type in MQOM is a byte string. Any other data types, such as bit-strings,
vectors of field elements, tuples or arrays, are serialized and represented as byte strings in input
and output of the MQOM algorithms. We detail hereafter how these data types are serialized
into byte strings.

In the algorithms presented in the following sections, we use the Serialize routine to explicitly
apply the serialization process depicted below. On the other hand, the Parse routine peforms
the inverse operation with the output format implicit from the context.

Bit-string. A bit-string is an element from {0, 1}ℓ for some ℓ ∈ N (most of the time ℓ = λ ∈
{128, 192, 256} or ℓ = 2λ ∈ {256, 384, 512}). A bit-string is naturally represented as a byte-
string of size ⌈ℓ/8⌉. Whenever ℓ is not a multiple of 8, the last (ℓ mod 8) bits of the bit-string
are the least significant bits in the last byte.

The different variants of MQOM involve three different fields: F2, F256 and F216 . Below, we
describe the serialization process for vectors of field elements for each of these fields.

Vectors of F2-elements. An element of F2 is naturally represented on a single bit. Vectors
from Fℓ

2 are only serialized for ℓ a multiple of 8. A vector v = (v1, . . . , vℓ) ∈ Fℓ
2 is serialized as:

Serialize(v) = B(v1, . . . , v8) ∥ . . . ∥ B(vℓ−7, . . . , vℓ)

where B is the byte-grouping function defined as:

B(b0, . . . , b7) =
7∑

i=0

2i · int(bi)

with int the natural mapping F2 → {0, 1} ⊆ N.

Vectors of F16-elements. An element of F16 is naturally represented as a half byte, commonly
referred to as a nibble. Specifically, an element e ∈ F16 is represented as a tuple (e0, . . . , e3) ∈ F4

2

such that e =
∑3

i=0 ei · ρi for ρ a primitive element of F16 over F2 (i.e. F16 = F2[ρ]). The byte
representation of a pair (e1, e2) ∈ F2

16 is defined as:

byte(e1, e2) = B(e1,0, e1,1, e1,2, e1,3, e2,0, e2,1, e2,2, e2,3) ⇔ ei =

3∑
j=0

ei,j · ρj , ∀i ∈ {1, 2} .

Vectors from Fℓ
16 are only serialized for ℓ a multiple of 2. A vector v = (v1, . . . , vℓ) ∈ Fℓ

16 is
naturally serialized as:

Serialize(v) = byte(v1, v2) ∥ . . . ∥ byte(vℓ−1, vℓ) .

Vectors of F256-elements. An element of F256 is naturally represented as a byte. Specifically,
an element e ∈ F256 is represented as a tuple (e0, . . . , e7) ∈ F8

2 such that e =
∑7

i=0 ei · ξi for
ξ a primitive element of F256 over F2 (i.e. F256 = F2[ξ]). The byte representation of such an
element is defined as:

byte(e) = B(e0, . . . , e7) ⇔ e =

7∑
i=0

ei · ξi .

MQOM: MQ on my Mind 17

A vector (v1, . . . , vℓ) ∈ Fℓ
256 is naturally serialized as:

Serialize(v) = byte(v1) ∥ . . . ∥ byte(vℓ) .

Vectors of F216-elements. An element e ∈ F216 is represented as a pair (e0, e1) ∈ F256 × F256

such that e = e0+e1 ·ν for ν a primitive element of F216 over F256 (i.e. F216 = F256[ν]). Such an
element of F216 is serialized as byte(e0) ∥ byte(e1). A vector (v1, . . . , vℓ) ∈ Fℓ

216 is hence naturally
serialized as:

Serialize(v) = byte(v1,0) ∥ byte(v1,1) ∥ . . . ∥ byte(vℓ,0) ∥ byte(vℓ,1)

where vi = vi,0 + vi,1 · ν for all i ∈ [1, ℓ].

The concrete values of ρ, ξ and ν which define the representation of F16, F256 and F216 are
provided in Section 3.

Tuples and arrays. MQOM further manipulates tuples of elements that might be of different
natures. Such a tuple is naturally serialized as:

Serialize((e1, . . . , eℓ)) = Serialize(e1) ∥ . . . ∥ Serialize(eℓ) .

In the same way, an array arr = (arr[0], . . . , arr[ℓ− 1]) is serialized as

Serialize(arr) = Serialize(arr[0]) ∥ . . . ∥ Serialize(arr[ℓ− 1]) .

18 MQOM: MQ on my Mind

2.4 Main algorithms

2.4.1 Key generation

The key generation of MQOM consists in pseudorandomly generating a (packed) MQ instance,
with triangular matrices Âi. It randomly draws a master seed seed key from which it derives
the secret MQ solution x and another seed mseed eq from which the packed MQ equations
{Âi}, {b̂i} are derived. The MQ output ŷ is then computed from {Âi}, {b̂i} and x. Finally, the
key pair is defined and returned as pk := (mseed eq, ŷ) and sk := (pk, x). The key generation
is depicted in Algorithm 1. The subroutine ExpandEquations is invoked to expand the MQ
equations from the seed mseed eq. Subseeds seed eq[0], . . . , seed eq[m̂− 1] are first derived
from mseed eq, then (Âi, b̂i) is expanded from seed eq[i] for every i ∈ [1, m̂].

Algorithm 1 KeyGen()

Output: a secret key sk, a public key pk

1: seed key← {0, 1}2λ
2: (x, mseed eq)← Parse(XOF0(seed key, len := |x|2 + 2λ)) ▷ x ∈ Fn, mseed eq ∈ {0, 1}2λ
3: ({Âi}, {b̂i})← ExpandEquations(mseed eq) ▷ Âi ∈ Kn×n, b̂i ∈ Kn

4: for i = 1 to m̂ do
5: ŷi ← x⊺Âix+ b̂⊺i x ▷ ŷi ∈ K
6: ŷ ← (ŷ1, . . . , ŷm̂) ▷ ŷ ∈ Km̂

7: pk← Serialize(mseed eq, ŷ)
8: sk← Serialize(pk, x)
9: return (pk, sk)

Algorithm 2 ExpandEquations(mseed eq)

Input: a seed key mseed eq ∈ {0, 1}2λ
Output: Packed MQ equations ({Âi}, {b̂i})
1: Let nfeq = n+

∑n
j=1 j ▷ Number of field elements for (Âi, b̂i)

2: Let nbeq = nfeq · log2 |K|
8 ▷ Number of PRG bytes for (Âi, b̂i)

3: for i = 1 to m̂ do
4: seed eq[i− 1]← XOF1((mseed eq,Bits16(i− 1)), len := λ)
5: (rowi,1, . . . , rowi,n, b̂i)← Parse(PRG(0λ, 0, seed eq[i− 1], nbeq)) ▷ rowi,j ∈ Kj , b̂i ∈ Kn

6: for j = 1 to n do
7: Âi,j ← (rowi,j ∥ 0Kn−j) ▷ Âi,j ∈ Kn, jth row of Âi

8: Âi ← (Âi,1, . . . , Âi,n) ▷ Âi ∈ Kn×n

9: return ({Âi}, {b̂i})

MQOM: MQ on my Mind 19

2.4.2 Signing

The MQOM signing process is depicted in Algorithm 3 while the challenge sampling subroutine
(implementing the grinding tweak) is depicted in Algorithm 4. The subroutines for the BLC
commitment and computation of Pα are depicted in Section 2.5.

Algorithm 3 Sign(sk, msg)

Input: a secret key sk, a message msg
Output: a signature sig
1: (pk, x) = Parse(sk)
2: (mseed eq, ŷ) = Parse(pk)
3: mseed← {0, 1}λ
4: salt← {0, 1}λ
5: msg hash← Hash2(msg)
6: (com1, key, x0, u0, u1)← BLC.Commit(mseed, salt, x)
7: (α0, α1)← ComputePAlpha(com1, x0, u0, u1, x, mseed eq)
8: com2 ← Hash3(α0, α1)
9: hash← Hash4(pk, com1, com2, msg hash)

10: (i∗, nonce)← SampleChallenge(hash)
11: opening← BLC.Open(key, i∗)
12: return sig := Serialize(salt, com1, com2, α1, opening, nonce)

Algorithm 4 SampleChallenge(hash)

Input: Fiat-Shamir hash digest hash ∈ {0, 1}2λ
Output: challenge indexes i∗ ∈ [0, N − 1]τ , a grinding counter nonce ∈ [0, 232 − 1]
1: nonce← 0 ▷ nonce ∈ [0, 232 − 1]
2: (i∗, val)← Parse(XOF5((hash, nonce), len := τ · log2(N) + w)) ▷ i∗ ∈ [0, N − 1]τ

3: while val ̸= 0 do ▷ val ∈ [0, 2w − 1]
4: nonce← nonce+ 1
5: (i∗, val)← Parse(XOF5((hash, nonce), len := τ · log2(N) + w))

6: return (i∗, nonce)

20 MQOM: MQ on my Mind

2.4.3 Verification

The MQOM verification process is depicted in Algorithm 5. The subroutines for the BLC
evaluation and recomputation of Pα are depicted in Section 2.5.

Algorithm 5 Verif(pk, msg, sig)

Input: a public key pk, a message msg, a signature sig
Output: True or False
1: (mseed eq, ŷ) = Parse(pk)
2: (salt, com1, com2, α1, opening, nonce) = Parse(sig)
3: msg hash← Hash2(msg)
4: hash← Hash4(pk, com1, com2, msg hash)
5: (i∗, val)← Parse(XOF5((hash, nonce), len := τ · log2(N) + w))
6: if val ̸= 0 then return False
7: (ret, x eval, u eval)← BLC.Eval(salt, com1, opening, i

∗)
8: if ret ̸= True then return False
9: α0 ← RecomputePAlpha(com1, α1, x eval, u eval, mseed eq, ŷ)

10: com′2 ← Hash3(α0, α1)
11: if com′2 ̸= com2 then return False
12: return True

MQOM: MQ on my Mind 21

2.5 Subroutines

2.5.1 Arithmetic routines

The main arithmetic routine of the signing process is ComputePAlpha which computes the
polynomials Pα = Pu + F̂ (Px), for all the executions e ∈ [0, τ − 1], where F̂ = (f̂1, . . . , f̂m̂)
with f̂i(x) = x⊺Âix + b̂⊺i x − ŷi. The resulting polynomials are returned as arrays of coefficient
vectors: α0 = (α0[0], . . . , α0[τ − 1]) and α1 = (α1[0], . . . , α1[τ − 1]) such that for a given
execution e, the polynomial Pα is defined as: Pα = α0[e]+ α1[e] ·X. This function relies on
the subroutine ComputePz which computes Pz = F̂ (Px) from Px. The batching (a.k.a. 5-round)
variant is enabled/disabled with the Boolean batching.

Algorithm 6 ComputePAlpha(com, x0, u0, u1, x, mseed eq)

Input: a BLC commitment com, coefficient arrays x0, u0, u1, MQ secret solution x, seed
mseed eq of the packed MQ equations {Âi}, {b̂i}

Output: coefficient arrays α0, α1

1: if batching then ▷ batching = True ⇒ 5-round variant

2: Γ ∈ Kη×m̂ ← Parse(XOF8(com, len := η · m̂ · log2 |K|))
3: else ▷ batching = False ⇒ 3-round variant
4: Γ← Iη ▷ Identity matrix Iη ∈ Kη×η with η = m̂

5: ({Âi}, {b̂i})← ExpandEquations(mseed eq)
6: for e = 0 to τ − 1 do
7: (z0, z1)← ComputePz(x0[e], x, {Âi}, {b̂i}) ▷ Pz = z0 + z1 ·X ∈

(
K[X]⩽1

)m̂
8: α0[e]← u0[e]+ Γ · z0
9: α1[e]← u1[e]+ Γ · z1 ▷ Pα = α0[e]+ α1[e] ·X ∈

(
K[X]⩽1

)η
10: return (α0, α1)

Algorithm 7 ComputePz(x0[e], x, {Âi}, {b̂i})

Input: coefficient vectors x0[e] ∈ Kn, x ∈ Fn, MQ equations {Âi}, {b̂i}
Output: coefficients z0, z1 ∈ Km̂

▷ Compute Pz,i = Px
⊺ÂiPx + b̂⊺iPx ·X − yi ·X2 for all i ∈ [1, m̂]

▷ Skip computation of degree-2 coefficients (known to be 0)

1: for i = 1 to m̂ do
▷ Compute Pt = t0 + t1 ·X := Âi · Px + b̂i ·X

2: t0 ← Âi · x0[e] ▷ t0 ∈ Kn

3: t1 ← Âi · x+ b̂i ▷ t1 ∈ Fn

▷ Compute Pz,i = z0,i + z1,i ·X = P ⊺
t Px − yi ·X2

4: z0,i ← t⊺0 · x0[e] ▷ z0,i ∈ K
5: z1,i ← t⊺0 · x+ t⊺1 · x0[e] ▷ z1,i ∈ K
6: z0 ← (z0,1, . . . , z0,m̂) ▷ z0 ∈ Km̂

7: z1 ← (z1,1, . . . , z1,m̂) ▷ z1 ∈ Km̂

8: return (z0, z1)

Remark 3. In ComputePz, the variable t1 = Âi ·x+ b̂i takes a different value for each i, but for

22 MQOM: MQ on my Mind

a fixed i, its value remains constant across all executions e = 0, . . . , τ − 1. This implies that the
m̂ values of t1 (corresponding to i ∈ [1, m̂]) can be computed once and reused for all executions.
Furthermore, since these values depend only on the secret key sk, they could be precomputed and
used for every call to the signing algorithm. We do not consider this optimization here to keep
the description simple but it could be easily integrated to enhance the efficiency of a concrete
implementation.

The main arithmetic routine of the verification process is RecomputePAlpha which recomputes
the polynomials Pα from the coefficients α1 and the opened evaluations Px(r), Pu(r) for all the
executions e ∈ [0, τ − 1]. Namely, this function recomputes and returns the missing coefficients
α1. It makes use of the subroutine ComputePzEval which computes the evaluation Pz(r) from
Px(r), Pu(r) for a single execution.

Algorithm 8 RecomputePAlpha(com, α1, i
∗, x eval, u eval, mseed eq, {ŷi})

Input: a BLC commitment com, coefficient array α1, index array i∗, evaluation arrays x eval,
u eval, seed mseed eq of the packed MQ equations {Âi}, {b̂i}, and {ŷi}

Output: coefficient array α0

1: if batching then ▷ batching = True ⇒ 5-round variant

2: Γ ∈ Kη×m̂ ← Parse(XOF8(com, len := η · m̂ · log2 |K|))
3: else ▷ batching = False ⇒ 3-round variant
4: Γ← Iη ▷ Identity matrix Iη ∈ Kη×η with η = m̂

5: ({Âi}, {b̂i})← ExpandEquations(mseed eq)
6: for e = 0 to τ − 1 do
7: Let r = ωi∗[e] ▷ r ∈ K
8: Let vx = x eval[e] ▷ vx = Px(r) ∈ Kn

9: Let vu = u eval[e] ▷ vu = Pu(r) ∈ Kη

10: vz ← ComputePzEval(r, vx, {Âi}, {b̂i}, {ŷi}) ▷ vz = Pz(r) ∈ Km̂

11: vα ← vu + Γ · vz ▷ vα = Pα(r) = α0[e]+ α1[e] · r
12: α0[e]← vα − α1[e] · r ▷ α0[e] ∈ Kη

13: return α0

Algorithm 9 ComputePzEval(r, vx, {Âi}, {b̂i}, {ŷi})

Input: evaluation point r ∈ Ω, evaluation vx ∈ K, MQ equations {Âi}, {b̂i}, {ŷi}
Output: evaluation vz ∈ Km̂

▷ Compute vz,i = vx
⊺Âivx + b̂⊺i vx · r − yi · r2 for all i ∈ [1, m̂]

1: for i = 1 to m̂ do
▷ Compute vt = Pt(r) = Âi · Px(r) + b̂i · r

2: vt ← Âi · vx + b̂i · r ▷ vt ∈ Kn

▷ Compute vz,i = Pz,i(r) = v⊺t vx − ŷi · r2

3: vz,i ← v⊺t · vx − ŷi · r2 ▷ vz,i ∈ K
4: vz ← (vz,1, . . . , vz,m̂) ▷ vz ∈ Km̂

5: return vz

MQOM: MQ on my Mind 23

2.5.2 Batch line commitment routines

The BLC.Commit routine computes the BLC commitment com1, the associated opening key
(the nodes of the GGM trees), and the associated polynomials Px, Pu returned as array of
coefficients.

Algorithm 10 BLC.Commit(mseed, salt, x)

Input: a master seed mseed ∈ {0, 1}λ, a salt salt ∈ {0, 1}λ, an MQ secret solution x
Output: a BLC commitment com1, an opening key key, coefficient arrays x0, u0, u1
1: (rseed[0], . . . , rseed[τ − 1])← Parse(PRG(0λ, 0, mseed, τ · λ))
2: δ ← FirstBitsλ(x) ▷ δ ∈ {0, 1}λ
3: for e = 0 to τ − 1 do
4: (node[e], lseed[e])← GGMTree.Expand(salt, rseed[e], e, δ)
5: tweaked salt← TweakSalt(salt, 0, e, 0)
6: for i = 0 to N − 1 do
7: ls com[e][i]← SeedCommit(tweaked salt, lseed[e][i])
8: exp[e][i]← PRG(salt, e, lseed[e][i], |x|8 + |u|8 − λ/8)
9: (x̄i, ūi)← Parse(lseed[e][i] ∥ exp[e][i]) ▷ x̄i ∈ Fn, ūi ∈ Kη

10: hash ls com[e]← Hash6(ls com[e])

▷ Compute Pu = u0[e]+ u1[e] ·X =
∑N−1

i=0 ūi · (X − ωi)

11: u0[e]← −
∑N−1

i=0 ωi · ūi ▷ u0[e] ∈ Kη

12: u1[e]←
∑N−1

i=0 ūi ▷ u1[e] ∈ Kη

▷ Compute Px = x0[e]+ x ·X = ∆x[e] ·X +
∑N−1

i=0 x̄i · (X − ωi)

13: x0[e]← −
∑N−1

i=0 ωi · x̄i ▷ x0[e] ∈ Kn

14: ∆x[e]← x−
∑N−1

i=0 x̄i ▷ ∆x[e] ∈ Fn

15: ∆
(1)
x [e]← NextBitsλ(∆x[e]) ▷ ∆

(1)
x [e] ∈ {0, 1}|x|2−λ

16: com1 ← Hash7(hash ls com,∆
(1)
x)

17: key← Serialize(node, ls com,∆
(1)
x)

18: return (com1, key, x0, u0, u1)

From an opening key and an index array i∗, the BLC.Open routine returns the opening tuple
made of the sibling paths (path), the hidden leaf commitments (out ls com) and the correction

values (∆
(1)
x).

Algorithm 11 BLC.Open(key, i∗)

Input: a commitment key key, an index array i∗

Output: a BLC opening opening ∈ {0, 1}λ·τ ·(log2(N)+2)

1: (node, ls com,∆
(1)
x)← Parse(key)

2: for e = 0 to τ − 1 do
3: path[e]← GGMTree.Open(node[e], i∗[e])
4: out ls com[e]← ls com[e][i∗[e]]

5: opening← Serialize(path, out ls com,∆
(1)
x)

6: return opening

24 MQOM: MQ on my Mind

The BLC.Eval routine is called by the verification algorithm to check the opening validity and
derive the underlying evaluations Px(r), Pu(r) for all the executions e ∈ [0, τ − 1].

Algorithm 12 BLC.Eval(salt, com, opening, i∗)

Input: a salt salt, a BLC commitment com, a BLC opening opening, index array i∗

Output: ret ∈ {True,False}, evaluation arrays x eval, u eval

1: (path, out ls com,∆
(1)
x)← Parse(opening)

2: for e = 0 to τ − 1 do

▷ Compute partial GGM trees
3: lseed[e]← GGMTree.PartiallyExpand(salt, path[e], i∗[e])

▷ Compute evaluations
4: tweaked salt← TweakSalt(salt, 0, e, 0)
5: for i = 0 to N − 1 do
6: if i ̸= i∗[e] then
7: ls com[e][i]← SeedCommit(tweaked salt, lseed[e][i])
8: exp[e][i]← PRG(salt, e, lseed[e][i], |x|8 + |u|8 − λ/8)
9: (x̄i, ūi)← Parse(lseed[e][i] ∥ exp[e][i]) ▷ x̄i ∈ Fn, ūi ∈ Kη

10: ls com[e][i∗[e]]← out ls com[e]
11: hash ls com[e]← Hash6(ls com[e])

12: Let r = ωi∗[e] ▷ r ∈ K
13: ∆x[e]← PadLeftλ(∆

(1)
x [e]) ▷ ∆x[e] ∈ Fn

14: vx ← ∆x[e] · r +
∑

i ̸=i∗[e] x̄i · (r − ωi) ▷ vx = Px(r) ∈ Kn

15: vu ←
∑

i ̸=i∗[e] ūi · (r − ωi) ▷ vu = Pu(r) ∈ Kη

16: x eval[e]← vx
17: u eval[e]← vu

▷ Verify opening

18: com′ ← Hash7(hash ls com,∆
(1)
x)

19: if com′ ̸= com then
20: return (False,⊥,⊥)
21: return (True, x eval, u eval)

Optimized folding based on Gray Code. While u0[e], u1[e], x0[e] and ∆x[e] in BLC.Commit
can be computed using generic field operations over K, the order of the public evaluation points
ω0, . . . , ωN−1 from Ω has been chosen to enable optimization. Using the classical lexicographic
order yields:

• computational complexity O(N · log2N) with a memory complexity O(1) when using
direct computation;

• computational complexity O(N + log2N) with a memory complexity O(N) when using
the divide-and-conquer method [Roy22].

Although memory scaling in O(N) is acceptable on laptops or servers, it can be problem-
atic for embedded devices with limited memory. In MQOM, as in the round-2 SDitH can-
didate [AFG+24], we use a Gray-code ordering that achieves the best of both worlds with a

MQOM: MQ on my Mind 25

computational complexity of O(N + log2N) and memory usage of O(1). By definition, the
Gray-code ordering ensures that two consecutive values differ in exactly one bit (see Section 3.1
for the precise definition of ω1, . . . , ωN−1).

For a fixed loop iteration e ∈ {0, . . . , τ − 1}, we define:

rawi := lseed[e][i] ∥ exp[e][i]

so that (x̄i, ūi) = Parse(rawi). The procedure BLC.ComputeFolding, depicted below, takes as
input the raw random tapes raw0, . . . , rawN−1 and efficiently computes the following values:

x̄Acc :=
∑
i

x̄i, ūAcc :=
∑
i

ūi, x̄Fold :=
∑
i

ωi · x̄i, ūFold :=
∑
i

ωi · ūi .

This procedure is invoked in BLC.Commit (within the signing algorithm) and in BLC.Eval (within
the verification algorithm). In the latter case, the random tape of the hidden leaf i∗[e] is
unknown, so the procedure is called with rawi∗[e] := 0. This amounts to computing the above
values as sums over all indices i ̸= i∗[e].
In BLC.Commit (signing algorithm), these values directly yield the line coefficients and cor-

rection value as:

u0[e] = −ūFold , u1[e] = ūAcc , x0[e] = −x̄Fold , ∆x[e] = x− x̄Acc .

In BLC.Eval (verification algorithm), these values are used to compute the evaluations vx and
vu as:

vx = (∆x[e]+ x̄Acc) · r − x̄Fold
vu = ūAcc · r − ūFold .

From these equations, one can observe that the contributions of x̄i∗[e] (resp. ūi∗[e]) cancel out
in the computation of vx (resp. vu). Hence, setting rawi∗[e] = 0 does not affect the final result.

The procedure BLC.ComputeFolding works as follows. After i iterations of the main loop:

• the variable acc stores the partial sum
∑i

k=0 rawk;

• the variables {fd0, . . . , fdlog2 N−1} represent the value

i∑
j=0

(wj − wj+1) ·
i∑

k=0

rawk =
i∑

k=0

wk · rawk − wi+1 ·
i∑

k=0

rawk ,

where fdj corresponds to the jth coordinate of this value in the canonical F2-basis of K.

At the end of the loop, we have acc =
∑N−1

k=0 rawk and {fdj}j encoding
∑N−1

k=0 wk · rawk, with
the convention wN := 0. The final desired values are then obtained through parsing and scaling.

Note that, in memory-constrained contexts, BLC.ComputeFolding should be implemented in-
crementally to avoid large memory overhead.

26 MQOM: MQ on my Mind

Algorithm 13 BLC.ComputeFolding(raw0, . . . , rawN−1)

Input: raw0, . . . , rawN−1 ∈ {0, 1}n+µ·η

1: acc = 0 ▷ acc ∈ {0, 1}n+µ·η

2: fd0 = 0, . . . , fdlog2 N−1 = 0 ▷ fdj ∈ {0, 1}n+µ·η

3: for i = 0 to N − 1 do
4: acc← acc⊕ rawi
5: fdpi ← fdpi ⊕ acc ▷ pi is the position of the only bit set in ωi ⊕ ωi+1

6: (x̄Acc, ūAcc)← Parse(acc) ▷ x̄Acc ∈ Fn, ūAcc ∈ Kη

7: x̄Fold = 0, ūFold = 0 ▷ x̄Fold ∈ Kn, ūFold ∈ Kη

8: for j = 0 to log2N − 1 do
9: (fdxj , fd

u
j)← Parse(fdj) ▷ fdxj ∈ Fn, fduj ∈ Kη

10: x̄Fold ← x̄Fold + ej · fdxj ▷ {e0, . . . , elog2 |K|−1} is the canonical F2-basis of K
11: ūFold ← ūFold + ej · fduj
12: return (x̄Acc, ūAcc), (x̄Fold, ūFold)

MQOM: MQ on my Mind 27

2.5.3 GGM tree routines

The GGM tree subroutines are depicted hereafter. The routine GGMTree.Expand (which is
called in BLC.Commit) expands a GGM tree from a root seed with a salt, an execution index e
(for domain separation) and the offset δ (for correlated tree optimization). It returns the derived
list of nodes and leaf seeds. The routine GGMTree.Open (which is called in BLC.Open) extracts
the sibling path from the nodes for a given hidden index. The routine GGMTree.PartiallyExpand
(which is called in BLC.Eval) expands a GGM tree partially from a sibling path with a salt,
an execution index e (for domain separation) and the underlying hidden index. The reader is
referred to Figure 3 for an illustration of the tree structure and numbering of nodes.

Algorithm 14 GGMTree.Expand(salt, rseed[e], e, δ)

Input: a salt salt ∈ {0, 1}λ, a root seed rseed[e] ∈ {0, 1}λ, an execution index e ∈ [0, τ − 1],
an offset δ ∈ {0, 1}λ

Output: a tree node array node[e], a leaf seed array lseed[e]
1: node[e][2]← rseed[e]
2: node[e][3]← rseed[e]⊕ δ
3: for j = 1 to log2(N)− 1 do
4: tweaked salt = TweakSalt(salt, 2, e, j)
5: for k = 2j to 2j+1 − 1 do
6: node[e][2k]← SeedDerive(tweaked salt, node[e][k])
7: node[e][2k + 1]← node[e][2k]⊕ node[e][k]

8: for i = 0 to N − 1 do
9: lseed[e][i]← node[e][N + i]

10: return (node[e], lseed[e])

Algorithm 15 GGMTree.Open(node[e], i∗[e])

Input: a tree node array node[e], a hidden leaf index i∗[e]
Output: sibling path path[e]
1: i← N + i∗[e] ▷ i: index of the hidden node at layer j
2: for j = 0 to log2(N)− 1 do
3: path[e][j]← node[e][i⊕ 1]
4: i← ⌊i/2⌋
5: return path

28 MQOM: MQ on my Mind

Algorithm 16 GGMTree.PartiallyExpand(salt, path[e], e, i∗[e])

Input: a salt salt ∈ {0, 1}λ, a sibling path path[e], an execution index e ∈ [0, τ−1], a hidden
leaf index i∗[e] ∈ [0, N − 1]

Output: a partial leaf seed array lseed[e]

▷ Initialize nodes to ⊥
1: (nodes[e][1], . . . , nodes[e][2N − 1]) = (⊥, . . . ,⊥)
▷ Assign nodes with sibling path

2: i← N + i∗[e] ▷ i: index of the hidden node at layer j
3: for j = 0 to log2(N)− 1 do
4: node[e][i⊕ 1]← path[e][j]
5: i← ⌊i/2⌋

▷ Derive nodes from sibling path
6: for j = 1 to log2(N)− 1 do
7: tweaked salt = TweakSalt(salt, 2, e, j)
8: for k = 2j to 2j+1 − 1 do
9: if node[e][k] ̸= ⊥ then

10: node[e][2k]← SeedDerive(tweaked salt, node[e][k])
11: node[e][2k + 1]← node[e][2k]⊕ node[e][k]

12: for i = 0 to N − 1 do
13: lseed[e][i]← node[e][N + i]

14: return lseed[e]

MQOM: MQ on my Mind 29

2.5.4 Seed processing routines

The following algorithms depict the subroutines of the GGM trees that are used to derive,
commit and expand the seeds.

Algorithm 17 TweakSalt(salt, sel, e, j)

Input: a salt salt ∈ {0, 1}λ, a selector sel ∈ {0, 1, 2}, an execution index e ∈ [0, τ − 1], a tree
layer j ∈ [0, log2(N)− 1]

Output: a tweaked salt tweaked salt ∈ {0, 1}λ
▷ sel = 0 for seed commitment (first part)
▷ sel = 1 for seed commitment (second part)
▷ sel = 2 for seed derivation
▷ sel = 3 for PRG

1: tweak← sel+ 4 · e+ 256 · j
2: tweaked salt← salt⊕ Bitsλ(tweak)
3: return tweaked salt

Algorithm 18 SeedDerive(tweaked salt, seed)

Input: a tweaked salt tweaked salt ∈ {0, 1}λ, a seed seed ∈ {0, 1}λ
Output: a derived seed new seed ∈ {0, 1}λ
1: new seed← Enc(key := tweaked salt, ptx := seed)⊕ ψ(seed)
2: return new seed

Algorithm 19 SeedCommit(tweaked salt, seed)

Input: a tweaked salt tweaked salt ∈ {0, 1}λ, a seed seed ∈ {0, 1}λ
Output: a seed commitment seed com ∈ {0, 1}2λ
1: com1 ← Enc(key := tweaked salt, ptx := seed)⊕ ψ(seed)
2: com2 ← Enc(key := tweaked salt⊕ Bitsλ(1), ptx := seed)⊕ ψ(seed)
3: seed com← com1 ∥ com2
4: return seed com

Algorithm 20 PRG(salt, e, seed, nbytes)

Input: a seed seed ∈ {0, 1}λ, an execution index e ∈ [0, τ − 1], a salt salt ∈ {0, 1}λ, a number
of bytes nbytes ∈ N

Output: a pseudorandom byte string out ∈ {0, 1}8·nbytes

1: nblocks ← ⌈8 · nbytes/λ⌉
2: for i = 0 to nblocks − 1 do
3: tweaked salt← TweakSalt(salt, 3, e, i)
4: block[i]← Enc(key := tweaked salt, ptx := seed)⊕ ψ(seed)
5: (byte[0] ∥ . . . ∥ byte[nblocks · λ/8− 1])← Parse(block[0] ∥ . . . ∥ block[nblocks − 1])
6: out← byte[0] ∥ . . . ∥ byte[nbytes − 1]
7: return out

30 MQOM: MQ on my Mind

2.5.5 Symmetric primitives

MQOM relies on two symmetric primitives:

1. A block cipher:

Enc : (key, ptx) ∈ {0, 1}λ × {0, 1}λ 7→ ctx ∈ {0, 1}λ ;

2. An extendable-output hash function:

XOF : (in, len) ∈ {0, 1}∗ × N 7→ out ∈ {0, 1}len .

We further define a (fixed-length output) hash function as:

Hash : in ∈ {0, 1}∗ 7→ XOF(in, 2λ) ∈ {0, 1}2λ .
Table 4 summarizes the instantiations of these two primitives for the NIST Categories I, III

and V (corresponding to a parameter λ = 128, λ = 192, λ = 256 respectively). For Category
III (λ = 192), Enc is defined as a truncated version of Rijndael-256-256 (hence the asterisk),
which is formally defined as:

Enc(192) : (key, ptx) ∈ {0, 1}192 × {0, 1}192 7→ Truncate192(Enc
(256)(key ∥ 064, ptx ∥ 064)) .

Table 4: Symmetric primitives in MQOM.

Category I Category III Category V

(λ = 128) (λ = 192) (λ = 256)

Enc AES-128 Rijndael-256-256∗ Rijndael-256-256

XOF SHAKE-128 SHAKE-256 SHAKE-256

Domain separation. We enforce domain separation for different calls to the XOF (or Hash)
functions by prepending a byte representing the call index i to the data being hashed. Specifi-
cally, for i ∈ N, with i < 256, we define:

XOFi(in, len) := XOF(Bits8(i) ∥ in, len) ,
and consequently Hashi(in) = Hash(Bits8(i) ∥ in).
Here is a summary of the invocations to the (extendable output) hash function with associated

purposes:

• XOF0: expansion of seed key (secret key),

• XOF1: expansion of seed eq (MQ equations),

• Hash2: message hash,

• Hash3: hash commitment of α0, α1,

• Hash4: Fiat-Shamir hash,

• XOF5: challenge sampling (with grinding),

• Hash6: hash commitment of leaf seed commitments,

• Hash7: BLC commitment,

• XOF8: generation of Γ (batching variant).

MQOM: MQ on my Mind 31

2.5.6 Bit manipulation

We define hereafter the bit manipulation functions. The function

Bitsℓ : [0, 2
ℓ − 1]→ {0, 1}ℓ

takes as input an integer and returns its binary representation. The functions FirstBitsλ and
NextBitsλ provide the λ first bits and |x|2−λ next bits of a |x|2-bit string. Formally, we define:

FirstBitsλ : ∆x ∈ Fn 7→ ∆(0)
x ∈ {0, 1}λ

and
NextBitsλ : ∆x ∈ Fn 7→ ∆(1)

x ∈ {0, 1}|x|2−λ .

where
(∆(0)

x ∥ ∆(1)
x) = Serialize(∆x) ∈ {0, 1}|x|2 .

We further define the function PadLeftλ as

PadLeftλ : ∆(1)
x ∈ {0, 1}|x|2−λ 7→ Parse(0λ ∥ ∆(1)

x) ∈ Fn .

Finally, the function
Truncateℓ : {0, 1}∗ → {0, 1}ℓ

returns the ℓ first bits of its input bit string.

32 MQOM: MQ on my Mind

3 MQOM instances

In this section, we propose several parameter sets for theMQOM signature scheme. As explained
hereafter, those parameters have been selected to meet the categories I, III and V defined by
the NIST while targeting good performances (in terms of signature size and running times).

3.1 Parameter selection

MQ parameters. Instead of considering prime field as in the first version, MQOMv2 relies
on the binary fields. The main motivation for this update is to avoid rejection sampling and
arithmetic-Boolean conversions. As first option, we chose |F| = 2 for the base field, which
leads to the shortest signatures. As second option, we chose |F| = 256 which enjoys easier
and faster implementation (with a field element matching a byte). As third option, we chose
|F| = 16 which enjoys fast implementation and short signature. For those three fields, we took
the number of equations m to be equal the number of unknowns n and selected the minimal
m = n to achieve a target security level (for categories I, III and V) according to the state of
the art of MQ cryptanalysis (see Section 4.2).
Looking ahead, the extension field K is either defined as F256 or F216 (see explanations below).

In order to ensure thatm is always divisible by µ = [K : F] (which simplifies the packing strategy
– see Section 2.1.2), we restricted the selection to values ofm that are multiples of 16 for F = F2,
multiples of 4 for F = F16, and multiples of 2 for F = F256.

Proof system parameters. The MQOM proof system relies on the parameters summarized in
Table 2: the size N of the evaluation set Ω := {ω0, . . . , ωN−1}, the extension field K of degree
µ, the number η of internal repetitions, the number τ of external repetitions and the grinding
proof-of-work parameter w.
We chose N as a power of two to manipulate complete binary GGM trees. A larger N leads

to a shorter signature at the cost of slower signing and verification algorithms. We chose to
consider two values for N , namely N = 2048 (short variant) and N = 256 (fast variant), to
obtain two different trade-offs between communication and computation. Then, the extension
field K is chosen such that |K| ≥ N . To ease the implementation, we chose to consider a common
K for the three base fields (F2, F16 and F256) and thus define K as their common extension such
that |K| ≤ N . This way, we get K = F216 for N = 2048 and K = F256 for N = 256.

Given the pair (N,K), we selected the remaining parameters to achieve λ bits of soundness,
with λ equal to 128, 192 and 256 for Categories I, III and V, respectively. On the one hand,
we took η = λ/ log2 |K| for the batching (5-round) variant to ensure a soundness error of
1/|K|η = 2−λ (while η is fixed to as m/µ by design for the 3-round variant). On the other hand,
we chose the parameters τ and w such that

(
2
N

)τ · 2−w ≤ 2−λ (see Section 2.1.4).

Field extension. As explained previously, the MQOM signature scheme relies on four different
fields for F and K: F2, F24 , F28 and F216 . Table 5 summarizes the field extensions that we use
in our instances.

MQOM: MQ on my Mind 33

Table 5: Definition of field extensions.

Field (F or K) Field extension

F24 F2[ρ]/⟨ρ4 + ρ+ 1⟩
F28 F2[ξ]/⟨ξ8 + ξ4 + ξ3 + ξ + 1⟩
F216 F28 [ν]/⟨ν2 + ν + ξ5⟩

At some stage, the MQOM signature requires lifting field elements into an extension field.
This lifting is straightforward by construction in the cases F2 ↪→ F24 and F28 ↪→ F216 , thanks
to the tower field structure. However, the situation is different when lifting elements from F24

to F28 . In this case, we rely on a field morphism between F24 and F28 , defined such that the
element ρ ∈ F24 is mapped to ξ7 + ξ6 + ξ5 ∈ F28 .

Evaluation domain. The PIOP evaluation query is sampled from the evaluation domain Ω :=
{ω0, . . . , ωN−1} of size N . In our instances, as explained in Section 2.5.2, we use the Gray-code
ordering, namely

ωi := ν ·
7∑

j=0

(θ
(i)
8+j · ξ

j) +
7∑

j=0

(θ
(i)
j · ξ

j) ∈ K

for all i ∈ {0, N − 1}, where θ(i)j = ij ⊕ ij+1 for all j, with (i0, . . . , i16) the binary decomposition

of i :=
∑16

j=0 ij · 2j .

3.2 Key and signature sizes

Public key. The public key consists of a 2λ-bit seed mseed eq for the generation of the MQ
equations, and a serialized vector ŷ ∈ Km̂ corresponding to the outputs of the equations. For
|K| = 256, we store one field element on one byte. For |K| = 2562, we store one field element
on two bytes. Thus, the size of the public key is given by:

|pk| =


2λ
8 + m

8 bytes for F := F2

2λ
8 + m

2 bytes for F := F16

2λ
8 +m bytes for F := F256.

Secret key. The secret key consists of the same elements as the public key, plus a serialized
vector x ∈ Fn corresponding to the secret solution of the MQ system. For |F| = 2, we store 8
field elements on one byte. For |F| = 16, we store two field elements on one byte. For |F| = 256,
we store one field element on one byte. Thus, the size of the secret key is given by:

|sk| =


2λ
8 + m

8 + n
8 bytes for F2

2λ
8 + m

2 + n
2 bytes for F16

2λ
8 +m+ n bytes for F256

As all the existing public-key schemes, let us remark that we have an alternative defini-
tion of the key generation in which the secret key would be seed key, the seed from which
(mseed eq, y, x) are derived. In that case, the size of the secret key would be of 2λ/8 bytes,
but the signer would need to recompute mseed eq, y and x at each signature, increasing the
running time of the signing process. Moreover, the signing algorithm would be more sensitive to

34 MQOM: MQ on my Mind

side-channel attacks. We hence recommend to use this alternative only if the size of the secret
key is critical.

Signature size. The size (in bits) of a signature is given by:

|σ| = 32 size of nonce

+ λ size of the salt

+ 4λ size of com1 and com2

+ τ · (η · µ · log2 |F|) size of α1

+ τ · (n · log2 |F| − λ) size of ∆x′[e] in opening

+ τ · λ · log2N size of path in opening

+ τ · 2λ size of out ls com in opening

Given our natural serialization of field elements, log2 |F| is 1 for F2, 4 for F16, and 8 for F256.
We obtain the following sizes in bytes:

|σ| = 4 +
τ ·
(
n+ η · µ

)
8

+
5λ+ τ · λ · (log2N + 1)

8
for F2,

|σ| = 4 +
τ ·
(
n+ η · µ

)
2

+
5λ+ τ · λ · (log2N + 1)

8
for F16,

and

|σ| = 4 + τ ·
(
n+ η · µ

)
+

5λ+ τ · λ · (log2N + 1)

8
for F256.

The only difference in terms of signature size between the 3-round and the 5-round variants,
comes from the parameter η, which is a bit larger in the 3-round variant (i.e., η = m̂ = m/µ).

3.3 Proposed instances

All the signature parameters are summarized in Table 6, while the corresponding key and
signature sizes are given in Table 7.

MQOM: MQ on my Mind 35

Table 6: The MQ and proof system parameters of MQOM for NIST Security Categories I, III,
and V.

Parameter
Sets

NIST
Security

MQ Parameters Proof System Parameters

|F| m = n τ N µ η w

MQOM2-L1-gf2-short-3r/5r Cat. I 2 160 12 2048 16 10/8 8

MQOM2-L1-gf2-fast-3r/5r Cat. I 2 160 17 256 8 20/16 9

MQOM2-L1-gf16-short-3r/5r Cat. I 16 56 12 2048 4 14/8 8

MQOM2-L1-gf16-fast-3r/5r Cat. I 16 56 17 256 2 28/16 9

MQOM2-L1-gf256-short-3r/5r Cat. I 256 48 12 2048 2 24/8 8

MQOM2-L1-gf256-fast-3r/5r Cat. I 256 48 17 256 1 48/16 9

MQOM2-L3-gf2-short-3r/5r Cat. III 2 240 18 2048 16 15/12 12

MQOM2-L3-gf2-fast-3r/5r Cat. III 2 240 27 256 8 30/24 3

MQOM2-L3-gf16-short-3r/5r Cat. III 16 84 18 2048 4 21/12 12

MQOM2-L3-gf16-fast-3r/5r Cat. III 16 84 27 256 2 42/24 3

MQOM2-L3-gf256-short-3r/5r Cat. III 256 72 18 2048 2 36/12 12

MQOM2-L3-gf256-fast-3r/5r Cat. III 256 72 27 256 1 72/24 3

MQOM2-L5-gf2-short-3r/5r Cat. V 2 320 25 2048 16 20/16 6

MQOM2-L5-gf2-fast-3r/5r Cat. V 2 320 36 256 8 40/32 4

MQOM2-L5-gf16-short-3r/5r Cat. V 16 116 25 2048 4 29/16 6

MQOM2-L5-gf16-fast-3r/5r Cat. V 16 116 36 256 2 58/32 4

MQOM2-L5-gf256-short-3r/5r Cat. V 256 96 25 2048 2 48/16 6

MQOM2-L5-gf256-fast-3r/5r Cat. V 256 96 36 256 1 96/32 4

36 MQOM: MQ on my Mind

Table 7: The key and signature sizes in bytes.

Parameter
Set

Sizes (in bytes)

pk sk Sig.

MQOM2-L1-gf2-short-3r/5r 52 72 2 868 / 2 820

MQOM2-L1-gf16-short-3r/5r 60 88 3 060 / 2 916

MQOM2-L1-gf256-short-3r/5r 80 128 3 540 / 3 156

MQOM2-L1-gf2-fast-3r/5r 52 72 3 212 / 3 144

MQOM2-L1-gf16-fast-3r/5r 60 88 3 484 / 3 280

MQOM2-L1-gf256-fast-3r/5r 80 128 4 164 / 3 620

MQOM2-L3-gf2-short-3r/5r 78 108 6 388 / 6 280

MQOM2-L3-gf16-short-3r/5r 90 132 6 820 / 6 496

MQOM2-L3-gf256-short-3r/5r 120 192 7 900 / 7 036

MQOM2-L3-gf2-fast-3r/5r 78 108 7 576 / 7 414

MQOM2-L3-gf16-fast-3r/5r 90 132 8 224 / 7 738

MQOM2-L3-gf256-fast-3r/5r 120 192 9 844 / 8 548

MQOM2-L5-gf2-short-3r/5r 104 144 11 764 / 11 564

MQOM2-L5-gf16-short-3r/5r 122 180 12 664 / 12 014

MQOM2-L5-gf256-short-3r/5r 160 256 14 564 / 12 964

MQOM2-L5-gf2-fast-3r/5r 104 144 13 412 / 13 124

MQOM2-L5-gf16-fast-3r/5r 122 180 14 708 / 13 772

MQOM2-L5-gf256-fast-3r/5r 160 256 17 444 / 15 140

MQOM: MQ on my Mind 37

3.4 Benchmarks

3.4.1 Benchmarks on x86 platforms

Benchmarking platforms and protocol: The following x86 platforms profiles have been used
for benchmarking:

• an AVX2 optimized implementation, whose results are given in Table 8;

• an AVX2+GFNI optimized implementation, whose results are given in Table 9;

• an AVX-512+GFNI optimized implementation, whose results are given in Table 10.

The benchmarks were more specifically conducted on:

• an Intel Core Ultra 7 265U, a laptop grade CPU which has AVX2+GFNI support;

• an AMD Ryzen Threadripper PRO 7995WX, a workstation grade CPU which has AVX-
512+GFNI support.

The GFNI instruction set brings native F256 multiplication acceleration in the Rijndael field.
Regarding AVX-512, the MQOM implementation leverages dedicated optimizations that specifi-
cally make use of the avx512f, avx512vl, avx512bw, avx512vpopcntdq and avx512vbmi exten-
sions. The cycles measurements make use of performance counters of the machine for accurate
values. The timing measurements have been made with the turbo boost mode (i.e. automatic
frequency scaling of the CPU) deactivated. All the results have been gathered using the gcc

toolchain in version 15.2.0 with the -O3 compilation option.

About GFNI and AVX-512 support across x86 platforms: As we can see on Table 9, GFNI
brings an interesting performance boost for MQOM (up to 50% on some instances). AVX-512
also allows saving cycles on compatible platforms. This raises the question of how widespread
these x86 extensions are across modern Intel and AMD processors. Although the specific
support of GFNI is usually not detailed on Intel’s and AMD’s product briefs, we have used an
open benchmarking platform [Ope] that gathers a large CPU database (more than 1700 CPUs
listed from the 10 last years) with the result of the Linux command “cat /proc/cpuinfo”
allowing to check for specific extensions.
From this database, we can see that GFNI has been introduced by Intel around Q4 2020

with the Ice Lake microarchitecture: the oldest referenced CPU supporting it is the Intel Core
i5-1038NG7. Since Q1 2022, most of Intel CPUs seem to support AVX2 with GFNI, from Core
i3 laptop to Xeon server grade ones (even the low-end Intel Celeron N5095 embeds it). AVX-512
support (with its various sub-extensions) is more erratic, as some low-end processors such as
Core i3-1115G4 from Q4 2020 seem to support them, but more recent high-end CPUs such as
the Meteor Lake Intel Core Ultra 7 165U or the Arrow Lake Intel Core Ultra 7 265U (that we
use for our benchmarks) do not support them anymore. This seems to be related to the fact
that AVX-512 was not fuse-disabled on early consumer grade Alder Lake CPUs, leading to a
bypass activating them in the BIOS [Wik]. In fact, Intel officially reserves AVX-512 support
exclusively for its Xeon server-grade processors.
Regarding AMD, the situation appears more straightforward with GFNI and AVX-512 usu-

ally coming together. They have been introduced only on server grade CPUs in the Zen 4
microarchitecture in 2023 (this is the case for our AMD Ryzen Threadripper PRO 7995WX
benchmarking CPU). With the introduction of Zen 5 in Q2 2024, all the AMD CPUs from

38 MQOM: MQ on my Mind

laptop grade to server grade support both GFNI and AVX-512. The only exceptions may be
certain custom SoCs that AMD manufactures for specific customers, where these units are dis-
abled to reduce silicon area or power consumption; however, this applies only to a marginal set
of devices.
All in all, homogeneous GFNI support across x86 has become a reality in 2025, which MQOM

can take advantage of. AVX-512 has also been somewhat democratized with the advent of AMD
Zen 5, although Intel continues to reserve it for its server-grade processors.

MQOM: MQ on my Mind 39

Table 8: Benchmark of AVX2-optimized implementation of the MQOM on an AVX2 ma-
chine. Timings were run on an Intel Core Ultra 7 265U (with compilation for the AVX2
restricted instructions set using the ’-maes -mavx2’ compilation flags).

Instance
KeyGen Sign Verify

ms cycles ms cycles ms cycles

MQOM2-L1-gf2-fast-r3 0.96 1.22M 3.36 6.75M 3.24 6.33M

MQOM2-L1-gf2-fast-r5 0.76 1.21M 3.48 6.79M 3.28 6.27M

MQOM2-L1-gf2-short-r3 0.48 1.11M 5.92 11.94M 5.68 11.70M

MQOM2-L1-gf2-short-r5 0.60 1.15M 5.56 11.86M 5.68 11.62M

MQOM2-L1-gf16-fast-r3 0.08 0.28M 1.32 2.80M 1.28 2.35M

MQOM2-L1-gf16-fast-r5 0.12 0.28M 1.32 2.77M 1.16 2.29M

MQOM2-L1-gf16-short-r3 0.08 0.35M 3.24 6.56M 3.16 6.31M

MQOM2-L1-gf16-short-r5 0.24 0.34M 3.00 6.33M 2.96 6.03M

MQOM2-L1-gf256-fast-r3 0.12 0.30M 1.64 3.45M 1.52 3.01M

MQOM2-L1-gf256-fast-r5 0.28 0.28M 1.60 3.36M 1.36 2.89M

MQOM2-L1-gf256-short-r3 0.32 0.33M 3.68 7.51M 3.36 7.26M

MQOM2-L1-gf256-short-r5 0.40 0.33M 3.20 6.89M 3.12 6.60M

MQOM2-L3-gf2-fast-r3 2.40 5.03M 14.36 30.01M 14.04 29.41M

MQOM2-L3-gf2-fast-r5 2.36 4.98M 14.68 30.41M 14.16 29.69M

MQOM2-L3-gf2-short-r3 2.84 5.29M 29.16 61.33M 27.72 58.27M

MQOM2-L3-gf2-short-r5 2.44 5.24M 29.00 60.71M 27.72 57.81M

MQOM2-L3-gf16-fast-r3 0.68 1.33M 5.48 11.77M 5.56 11.36M

MQOM2-L3-gf16-fast-r5 0.64 1.31M 5.24 11.35M 5.32 10.61M

MQOM2-L3-gf16-short-r3 0.72 1.30M 17.16 35.84M 15.12 31.80M

MQOM2-L3-gf16-short-r5 0.48 1.32M 15.84 33.02M 14.36 29.48M

MQOM2-L3-gf256-fast-r3 0.72 1.51M 7.68 16.01M 7.08 14.82M

MQOM2-L3-gf256-fast-r5 0.72 1.49M 6.68 14.04M 6.48 13.42M

MQOM2-L3-gf256-short-r3 0.64 1.27M 20.28 42.55M 18.60 38.49M

MQOM2-L3-gf256-short-r5 0.76 1.27M 17.68 37.36M 15.92 33.20M

MQOM2-L5-gf2-fast-r3 4.00 8.26M 35.64 74.39M 35.76 75.00M

MQOM2-L5-gf2-fast-r5 3.92 8.15M 35.56 74.53M 34.96 72.95M

MQOM2-L5-gf2-short-r3 3.80 8.05M 64.72 135.01M 63.84 133.62M

MQOM2-L5-gf2-short-r5 3.80 8.01M 65.44 136.32M 63.88 133.36M

MQOM2-L5-gf16-fast-r3 1.28 2.53M 11.84 24.95M 11.84 24.62M

MQOM2-L5-gf16-fast-r5 0.56 2.52M 11.76 24.50M 11.80 23.31M

MQOM2-L5-gf16-short-r3 1.12 2.54M 27.36 56.83M 26.16 54.62M

MQOM2-L5-gf16-short-r5 1.32 2.52M 25.64 53.79M 25.12 52.26M

MQOM2-L5-gf256-fast-r3 1.24 2.56M 14.04 29.21M 14.04 29.51M

MQOM2-L5-gf256-fast-r5 1.16 2.57M 13.56 28.14M 13.28 27.52M

MQOM2-L5-gf256-short-r3 1.08 2.29M 30.68 64.02M 30.44 63.70M

MQOM2-L5-gf256-short-r5 2.16 2.29M 27.28 58.08M 26.60 56.81M

40 MQOM: MQ on my Mind

Table 9: Benchmark of optimized implementation of the MQOM on an AVX2+GFNI ma-
chine. Timings were run on an Intel Core Ultra 7 265U with the ’-march=native

-mtune=native’ compilation flags.

Instance
KeyGen Sign Verify

ms cycles ms cycles ms cycles

MQOM2-L1-gf2-fast-r3 0.68 0.99M 1.96 3.44M 1.68 3.14M

MQOM2-L1-gf2-fast-r5 0.80 0.98M 1.80 3.55M 1.76 3.04M

MQOM2-L1-gf2-short-r3 0.56 0.96M 3.04 6.24M 2.92 6.02M

MQOM2-L1-gf2-short-r5 0.52 0.94M 2.88 6.32M 3.04 6.01M

MQOM2-L1-gf16-fast-r3 0.08 0.24M 1.16 1.95M 0.64 1.56M

MQOM2-L1-gf16-fast-r5 0.20 0.24M 1.12 1.91M 0.52 1.54M

MQOM2-L1-gf16-short-r3 0.16 0.25M 2.52 5.29M 2.48 5.04M

MQOM2-L1-gf16-short-r5 0.12 0.25M 2.40 4.98M 2.36 4.77M

MQOM2-L1-gf256-fast-r3 0.16 0.21M 1.04 2.29M 0.96 1.91M

MQOM2-L1-gf256-fast-r5 0.12 0.22M 1.36 2.27M 0.64 1.81M

MQOM2-L1-gf256-short-r3 0.12 0.21M 2.76 5.91M 2.92 5.74M

MQOM2-L1-gf256-short-r5 0.08 0.21M 2.40 5.29M 2.72 5.14M

MQOM2-L3-gf2-fast-r3 1.92 4.25M 6.96 14.51M 6.64 13.59M

MQOM2-L3-gf2-fast-r5 2.20 4.33M 7.32 15.21M 6.32 13.50M

MQOM2-L3-gf2-short-r3 1.96 4.83M 16.44 34.07M 14.80 30.36M

MQOM2-L3-gf2-short-r5 1.92 4.77M 16.20 33.60M 14.64 30.01M

MQOM2-L3-gf16-fast-r3 0.44 0.95M 3.76 7.69M 3.48 7.31M

MQOM2-L3-gf16-fast-r5 0.48 0.91M 3.52 7.29M 3.20 6.78M

MQOM2-L3-gf16-short-r3 0.48 1.03M 14.08 29.39M 12.56 26.20M

MQOM2-L3-gf16-short-r5 0.64 1.01M 12.96 27.13M 11.20 23.58M

MQOM2-L3-gf256-fast-r3 0.44 0.96M 4.72 9.86M 4.60 9.52M

MQOM2-L3-gf256-fast-r5 0.56 0.96M 4.04 8.41M 4.00 8.35M

MQOM2-L3-gf256-short-r3 0.44 0.99M 16.56 34.60M 15.36 31.41M

MQOM2-L3-gf256-short-r5 0.40 0.99M 13.88 29.32M 12.80 26.32M

MQOM2-L5-gf2-fast-r3 3.24 6.88M 13.32 27.92M 14.00 28.92M

MQOM2-L5-gf2-fast-r5 3.28 6.77M 12.84 26.95M 12.52 26.03M

MQOM2-L5-gf2-short-r3 3.56 7.39M 24.12 50.33M 23.32 48.78M

MQOM2-L5-gf2-short-r5 3.52 7.49M 24.48 50.93M 23.08 48.23M

MQOM2-L5-gf16-fast-r3 0.84 1.66M 6.40 13.18M 6.00 12.52M

MQOM2-L5-gf16-fast-r5 0.84 1.66M 6.00 12.60M 5.88 12.21M

MQOM2-L5-gf16-short-r3 0.92 1.88M 18.36 37.79M 17.52 36.85M

MQOM2-L5-gf16-short-r5 0.96 1.89M 16.64 34.86M 16.24 33.89M

MQOM2-L5-gf256-fast-r3 0.60 1.57M 7.76 16.11M 7.60 15.60M

MQOM2-L5-gf256-fast-r5 0.68 1.57M 7.32 15.14M 6.96 14.48M

MQOM2-L5-gf256-short-r3 0.84 1.57M 20.20 42.36M 20.24 42.27M

MQOM2-L5-gf256-short-r5 0.72 1.56M 17.40 36.27M 17.36 36.28M

MQOM: MQ on my Mind 41

Table 10: Benchmark of optimized implementation of the MQOM on an AVX-512+GFNI
machine. Timings were run on an AMD Ryzen Threadripper PRO 7995WX with the
’-march=native -mtune=native’ compilation flags.

Instance
KeyGen Sign Verify

ms cycles ms cycles ms cycles

MQOM2-L1-gf2-fast-r3 0.84 0.86M 1.52 2.50M 1.20 2.11M

MQOM2-L1-gf2-fast-r5 0.72 0.93M 1.40 2.35M 1.40 2.11M

MQOM2-L1-gf2-short-r3 0.32 0.86M 2.04 5.09M 2.08 4.93M

MQOM2-L1-gf2-short-r5 0.36 0.87M 2.08 5.11M 2.00 4.95M

MQOM2-L1-gf16-fast-r3 0.00 0.24M 0.64 1.59M 0.64 1.24M

MQOM2-L1-gf16-fast-r5 0.16 0.25M 0.64 1.53M 0.48 1.18M

MQOM2-L1-gf16-short-r3 0.12 0.23M 1.84 4.35M 1.80 4.25M

MQOM2-L1-gf16-short-r5 0.08 0.21M 1.88 4.11M 1.56 3.96M

MQOM2-L1-gf256-fast-r3 0.00 0.24M 0.76 1.77M 0.76 1.52M

MQOM2-L1-gf256-fast-r5 0.16 0.23M 0.64 1.62M 0.60 1.40M

MQOM2-L1-gf256-short-r3 0.16 0.20M 2.08 5.04M 2.12 4.99M

MQOM2-L1-gf256-short-r5 0.16 0.19M 1.76 4.42M 1.88 4.30M

MQOM2-L3-gf2-fast-r3 1.08 2.94M 3.52 8.39M 3.24 8.04M

MQOM2-L3-gf2-fast-r5 1.16 2.86M 3.44 8.55M 3.32 8.05M

MQOM2-L3-gf2-short-r3 1.56 3.65M 9.36 23.69M 8.56 20.63M

MQOM2-L3-gf2-short-r5 1.44 3.45M 9.80 24.26M 8.64 21.12M

MQOM2-L3-gf16-fast-r3 0.32 0.74M 2.16 5.20M 1.88 4.77M

MQOM2-L3-gf16-fast-r5 0.32 0.73M 2.04 4.96M 1.76 4.48M

MQOM2-L3-gf16-short-r3 0.44 0.71M 8.36 20.58M 7.16 18.02M

MQOM2-L3-gf16-short-r5 0.56 0.74M 7.44 19.23M 6.64 16.10M

MQOM2-L3-gf256-fast-r3 0.04 0.66M 2.44 6.16M 2.68 5.85M

MQOM2-L3-gf256-fast-r5 0.28 0.66M 2.20 5.49M 2.16 5.20M

MQOM2-L3-gf256-short-r3 0.20 0.67M 9.60 23.99M 8.92 21.35M

MQOM2-L3-gf256-short-r5 0.28 0.66M 8.48 20.99M 7.24 17.80M

MQOM2-L5-gf2-fast-r3 1.80 4.54M 6.08 14.80M 5.68 13.96M

MQOM2-L5-gf2-fast-r5 1.96 4.64M 5.96 14.73M 5.84 14.35M

MQOM2-L5-gf2-short-r3 1.84 4.86M 13.52 32.45M 12.60 31.46M

MQOM2-L5-gf2-short-r5 2.00 4.94M 13.16 32.33M 12.76 31.31M

MQOM2-L5-gf16-fast-r3 0.48 1.29M 3.36 8.13M 3.08 7.64M

MQOM2-L5-gf16-fast-r5 0.56 1.26M 3.00 7.48M 2.80 6.93M

MQOM2-L5-gf16-short-r3 0.48 1.25M 10.76 26.64M 10.60 25.97M

MQOM2-L5-gf16-short-r5 0.16 1.27M 9.36 22.69M 9.16 22.05M

MQOM2-L5-gf256-fast-r3 0.40 1.06M 3.68 8.95M 3.64 8.96M

MQOM2-L5-gf256-fast-r5 0.48 1.10M 3.40 8.24M 3.28 8.21M

MQOM2-L5-gf256-short-r3 0.44 1.17M 11.36 27.85M 11.28 27.84M

MQOM2-L5-gf256-short-r5 0.36 1.06M 9.92 23.82M 9.52 23.86M

42 MQOM: MQ on my Mind

3.4.2 Benchmarks on embedded platforms

The MQOM implementation has been adapted1 to fit embedded platforms with low-memory
profiles, using dedicated memory optimizations for the PRG, PIOP and BLC primitives. We
present hereafter some benchmarks on Cortex-M4 MCUs. We use a Nucleo-L4R5ZI board
featuring a STM32 MCU with embedded 2MB of flash and 640KB of SRAM. All the results have
been obtained with the arm-none-eabi-gcc toolchain in version 14.2.1 using the compilation
flags -O3 and -march=armv7e-m -mtune=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-d16.
Our benchmarking setup closely follows that of the PQM4 framework [KPR+]: we configure

the MCU at 16MHz with a zero wait-state flash to remove effects of the prefetchers and have
proper cycles measurements. Beyond cycle counts, we also measure SRAM usage through:

• stack usage: measured via stack spraying, and corresponding to the most consuming usage
of a calling sequence;

• global variables usage: measured at link time using the compiling toolchain, by dedicating
a specific ELF section of the firmware to these variables;

• dynamic allocation usage: measured by tracking malloc and free calls through dedicated
wrappers.

The memory consumption reported in the following benchmarks corresponds to the sum of
these three components. This figure typically represents an overestimation, since the program
does not necessarily use all global variables or allocated variables along its most stack-consuming
call path. Note that this memory consumption does not include signature or key-pair sizes, as
our goal is solely to assess the internal memory usage of the primitives.
We provide three variants of our MQOM implementation (using only stack and global vari-

ables, no dynamic allocation), tailored to different usage contexts:

• An implementation with table-based AES/Rijndael and with F256 multiplication based
on small log/exp lookup tables. For the L1 security level, optimized ARM Cortex-M
assembly is used for AES, taken from [SS16]. The results are provided on Table 11.

• An implementation with table-based AES/Rijndael and with F256 multiplication based
on a large lookup table of 216 bytes. Compared to log/exp tables, the performance in
cycles are slightly better at the expense of a much larger memory usage. The results are
provided on Table 12.

• An implementation avoiding any table lookup on sensitive data. AES/Rijndael uses the
ARM Cortex-M assembly “fixsliced” implementation from [AP21].2 For the F256 mul-
tiplication, the SWAR technique (SIMD Within a Register) is used to vectorize 4-ways
operations within 32-bit registers. The results are provided on Table 13 (only the L1
security level is provided for this variant). As we can see, this variant runs slower but uses
less memory.

The rationale of providing the third variant is to have an implementation whose constant
time property is ensured whatever the underlying Cortex-M4 platform is. Using lookup tables
in SRAM is constant time when there is no prefetching or caching technology between the

1https://github.com/mqom/mqom-embedded/
2For the key schedule, which does not manipulate secrets in MQOM, we kept table-based implementation
from [SS16] instead of the “fixsliced” implementation.

https://github.com/mqom/mqom-embedded/

MQOM: MQ on my Mind 43

ARM core and the peripherals (SRAM in this case). In the STM32 Cortex-M4 MCU line, this
is usually the case and the two first implementation variants should be safe.3 However, in the
general case for Cortex-M4 hardware instantiations, a constant-time access to SRAM is not
guaranteed. It is noticeable that all constant-time MQOM L1-gf16 variants fit in less than
10kB of SRAM.
We have also ported MQOM on a custom board featuring a STM32F437 MCU that embeds

a dedicated coprocessor accelerating AES-128, allowing to improve the BLC computation per-
formance. The results for the constant time implementation are provided on Table 14 (to be
directly compared with the results from Table 13): we can see a speedup by a factor up to 4,
as well as a slightly improved SRAM usage.

3This is not the case for the flash peripheral whose access latency depends on the MCU configuration, and for
which prefetchers are used to accelerate the accesses.

44 MQOM: MQ on my Mind

Table 11: Benchmark of optimized implementation of the MQOM on Nucleo-L4R5ZI board
with a Cortex-M4 MCU. The Rijndael implementation is table based with optimized
assembly for L1, and the F256 field multiplication uses small log/exp tables.

Instance
KeyGen Sign Verify

memory cycles memory cycles memory cycles

MQOM2-L1-gf2-fast-r3 8.06kB 24.18M 16.19kB 150.36M 15.22kB 139.81M

MQOM2-L1-gf2-fast-r5 8.06kB 24.18M 16.26kB 149.84M 15.58kB 139.81M

MQOM2-L1-gf2-short-r3 8.38kB 21.16M 18.05kB 311.21M 17.46kB 311.66M

MQOM2-L1-gf2-short-r5 8.38kB 21.16M 18.10kB 312.19M 17.62kB 311.43M

MQOM2-L1-gf16-fast-r3 7.90kB 6.15M 14.85kB 71.18M 13.98kB 59.04M

MQOM2-L1-gf16-fast-r5 7.90kB 6.15M 13.82kB 73.04M 13.18kB 54.02M

MQOM2-L1-gf16-short-r3 8.02kB 4.88M 14.76kB 243.32M 14.25kB 240.42M

MQOM2-L1-gf16-short-r5 8.02kB 4.88M 14.06kB 220.97M 13.69kB 211.73M

MQOM2-L1-gf256-fast-r3 7.94kB 7.09M 16.94kB 83.25M 15.38kB 76.77M

MQOM2-L1-gf256-fast-r5 7.94kB 7.09M 14.32kB 77.25M 13.30kB 65.37M

MQOM2-L1-gf256-short-r3 8.04kB 5.74M 16.51kB 315.55M 15.50kB 313.24M

MQOM2-L1-gf256-short-r5 8.04kB 5.74M 14.46kB 250.10M 13.85kB 248.93M

MQOM2-L3-gf2-fast-r3 7.80kB 226.99M 26.83kB 892.71M 24.47kB 871.85M

MQOM2-L3-gf2-fast-r5 7.80kB 226.99M 26.93kB 893.34M 24.93kB 872.15M

MQOM2-L3-gf2-short-r3 8.28kB 216.68M 29.78kB 1830.54M 28.24kB 1792.01M

MQOM2-L3-gf2-short-r5 8.28kB 216.58M 29.71kB 1872.01M 28.47kB 1792.38M

MQOM2-L3-gf16-fast-r3 7.55kB 46.67M 23.13kB 379.34M 20.97kB 370.98M

MQOM2-L3-gf16-fast-r5 7.55kB 46.67M 20.94kB 340.04M 19.26kB 331.13M

MQOM2-L3-gf16-short-r3 7.72kB 41.56M 22.47kB 1556.62M 21.15kB 1433.39M

MQOM2-L3-gf16-short-r5 7.72kB 41.57M 20.86kB 1312.58M 19.86kB 1218.38M

MQOM2-L3-gf256-fast-r3 7.60kB 57.04M 27.94kB 492.33M 24.17kB 487.03M

MQOM2-L3-gf256-fast-r5 7.60kB 57.04M 21.96kB 413.57M 19.40kB 407.01M

MQOM2-L3-gf256-short-r3 7.75kB 51.23M 25.99kB 2025.81M 23.57kB 1897.36M

MQOM2-L3-gf256-short-r5 7.75kB 51.22M 21.54kB 1632.67M 19.98kB 1466.92M

MQOM2-L5-gf2-fast-r3 8.04kB 398.89M 41.61kB 2121.29M 37.40kB 2075.26M

MQOM2-L5-gf2-fast-r5 8.04kB 398.91M 41.77kB 2122.64M 38.03kB 2076.16M

MQOM2-L5-gf2-short-r3 8.68kB 375.60M 48.17kB 3550.74M 45.28kB 3528.78M

MQOM2-L5-gf2-short-r5 8.68kB 375.60M 48.05kB 3550.24M 45.50kB 3527.75M

MQOM2-L5-gf16-fast-r3 7.72kB 92.53M 31.10kB 733.98M 26.14kB 691.72M

MQOM2-L5-gf16-fast-r5 7.72kB 92.54M 29.22kB 684.47M 24.21kB 641.13M

MQOM2-L5-gf16-short-r3 7.95kB 81.39M 30.14kB 2257.34M 26.62kB 2238.70M

MQOM2-L5-gf16-short-r5 7.95kB 81.39M 28.49kB 1971.16M 25.07kB 1949.75M

MQOM2-L5-gf256-fast-r3 7.78kB 100.70M 39.27kB 886.91M 30.46kB 866.26M

MQOM2-L5-gf256-fast-r5 7.78kB 100.70M 33.08kB 785.51M 25.36kB 763.30M

MQOM2-L5-gf256-short-r3 7.98kB 89.54M 34.79kB 2890.61M 29.59kB 2878.14M

MQOM2-L5-gf256-short-r5 7.98kB 89.53M 29.90kB 2309.75M 24.62kB 2295.63M

MQOM: MQ on my Mind 45

Table 12: Benchmark of optimized implementation of the MQOM on Nucleo-L4R5ZI board
with a Cortex-M4 MCU. The Rijndael implementation is table based with optimized
assembly for L1, and the F256 field multiplication uses a large table of 65kB.

Instance
KeyGen Sign Verify

memory cycles memory cycles memory cycles

MQOM2-L1-gf2-fast-r3 72.58kB 24.18M 80.70kB 118.67M 79.73kB 112.50M

MQOM2-L1-gf2-fast-r5 72.58kB 24.18M 80.74kB 118.06M 80.06kB 112.46M

MQOM2-L1-gf2-short-r3 72.90kB 21.16M 82.54kB 253.96M 81.96kB 254.62M

MQOM2-L1-gf2-short-r5 72.90kB 21.16M 82.72kB 255.03M 82.26kB 254.21M

MQOM2-L1-gf16-fast-r3 72.40kB 5.90M 79.34kB 64.96M 78.48kB 53.29M

MQOM2-L1-gf16-fast-r5 72.40kB 5.90M 78.32kB 66.76M 77.68kB 48.24M

MQOM2-L1-gf16-short-r3 72.52kB 4.56M 79.36kB 233.10M 78.86kB 230.51M

MQOM2-L1-gf16-short-r5 72.52kB 4.56M 78.50kB 210.82M 78.10kB 201.72M

MQOM2-L1-gf256-fast-r3 72.44kB 6.66M 81.46kB 75.91M 79.90kB 69.34M

MQOM2-L1-gf256-fast-r5 72.44kB 6.66M 78.82kB 69.77M 77.80kB 57.99M

MQOM2-L1-gf256-short-r3 72.53kB 5.40M 81.00kB 301.93M 79.98kB 300.23M

MQOM2-L1-gf256-short-r5 72.53kB 5.40M 78.90kB 236.57M 78.26kB 235.87M

MQOM2-L3-gf2-fast-r3 72.31kB 226.99M 91.33kB 748.20M 88.96kB 704.34M

MQOM2-L3-gf2-fast-r5 72.31kB 227.03M 91.41kB 748.72M 89.42kB 704.56M

MQOM2-L3-gf2-short-r3 72.79kB 216.58M 94.26kB 1567.44M 92.82kB 1536.77M

MQOM2-L3-gf2-short-r5 72.79kB 216.68M 94.18kB 1609.13M 93.06kB 1537.54M

MQOM2-L3-gf16-fast-r3 72.05kB 45.87M 87.66kB 347.56M 85.48kB 336.83M

MQOM2-L3-gf16-fast-r5 72.05kB 45.88M 85.47kB 307.91M 83.77kB 296.90M

MQOM2-L3-gf16-short-r3 72.22kB 40.54M 86.96kB 1506.91M 85.63kB 1383.60M

MQOM2-L3-gf16-short-r5 72.22kB 40.55M 85.41kB 1262.70M 84.46kB 1168.47M

MQOM2-L3-gf256-fast-r3 72.11kB 55.84M 92.45kB 456.77M 88.68kB 449.42M

MQOM2-L3-gf256-fast-r5 72.11kB 55.83M 86.44kB 376.91M 83.90kB 369.35M

MQOM2-L3-gf256-short-r3 72.25kB 50.03M 90.49kB 1961.75M 88.04kB 1835.69M

MQOM2-L3-gf256-short-r5 72.25kB 50.03M 86.07kB 1567.93M 84.53kB 1405.06M

MQOM2-L5-gf2-fast-r3 72.55kB 398.87M 106.10kB 1668.46M 101.90kB 1622.96M

MQOM2-L5-gf2-fast-r5 72.55kB 398.90M 106.25kB 1669.16M 102.52kB 1623.31M

MQOM2-L5-gf2-short-r3 73.19kB 375.60M 112.65kB 2640.97M 109.73kB 2670.83M

MQOM2-L5-gf2-short-r5 73.19kB 375.59M 112.50kB 2639.79M 109.97kB 2669.15M

MQOM2-L5-gf16-fast-r3 72.22kB 90.08M 95.59kB 626.04M 90.64kB 588.02M

MQOM2-L5-gf16-fast-r5 72.22kB 90.07M 93.70kB 575.54M 88.69kB 536.94M

MQOM2-L5-gf16-short-r3 72.46kB 78.75M 94.62kB 2068.97M 91.08kB 2068.24M

MQOM2-L5-gf16-short-r5 72.46kB 78.74M 92.94kB 1783.21M 89.54kB 1780.28M

MQOM2-L5-gf256-fast-r3 72.29kB 97.88M 103.77kB 762.82M 94.97kB 748.92M

MQOM2-L5-gf256-fast-r5 72.29kB 97.87M 97.56kB 660.54M 89.86kB 646.10M

MQOM2-L5-gf256-short-r3 72.47kB 86.76M 99.27kB 2690.38M 94.07kB 2685.10M

MQOM2-L5-gf256-short-r5 72.47kB 86.76M 94.35kB 2105.61M 89.07kB 2100.60M

46 MQOM: MQ on my Mind

Table 13: Benchmark of optimized constant time implementation of the MQOM on
Nucleo-L4R5ZI board with a Cortex-M4 MCU. The Rijndael implementation is bit-
slice based with optimized assembly, and the F256 field multiplication uses 32-bit
registers SIMD-like optimizations in C. Only L1 has been implemented for now for
the purpose of the benchmark.

Instance
KeyGen Sign Verify

memory cycles memory cycles memory cycles

MQOM2-L1-gf2-fast-r3 3.07kB 94.45M 11.22kB 317.84M 10.26kB 307.98M

MQOM2-L1-gf2-fast-r5 3.07kB 94.44M 11.29kB 317.36M 10.63kB 308.01M

MQOM2-L1-gf2-short-r3 3.39kB 90.89M 13.09kB 857.42M 12.62kB 853.27M

MQOM2-L1-gf2-short-r5 3.39kB 90.89M 13.16kB 858.64M 12.76kB 852.80M

MQOM2-L1-gf16-fast-r3 2.90kB 21.78M 9.88kB 162.86M 9.02kB 147.01M

MQOM2-L1-gf16-fast-r5 2.90kB 21.78M 8.87kB 167.84M 8.22kB 145.09M

MQOM2-L1-gf16-short-r3 3.02kB 19.88M 9.77kB 659.80M 9.31kB 652.39M

MQOM2-L1-gf16-short-r5 3.02kB 19.88M 8.99kB 655.00M 8.62kB 640.89M

MQOM2-L1-gf256-fast-r3 2.96kB 24.89M 12.00kB 194.52M 10.46kB 186.08M

MQOM2-L1-gf256-fast-r5 2.96kB 24.90M 9.37kB 172.81M 8.35kB 159.12M

MQOM2-L1-gf256-short-r3 3.03kB 24.79M 11.47kB 830.21M 10.46kB 821.49M

MQOM2-L1-gf256-short-r5 3.03kB 24.79M 9.39kB 675.31M 8.80kB 668.62M

Table 14: Benchmark of optimized constant time implementation of the MQOM on a
board with a Cortex-M4 STM32F437 MCU featuring hardware accelerated AES-
128. The Rijndael implementation for L1 is hence using the hardware accelerator,
and the F256 field multiplication uses 32-bit registers SIMD-like optimizations in C.

Instance
KeyGen Sign Verify

memory cycles memory cycles memory cycles

MQOM2-L1-gf2-fast-r3 1.81kB 14.38M 9.74kB 155.73M 8.79kB 147.42M

MQOM2-L1-gf2-fast-r5 1.81kB 14.38M 9.82kB 155.23M 9.16kB 147.45M

MQOM2-L1-gf2-short-r3 1.92kB 11.41M 11.62kB 317.97M 11.15kB 315.36M

MQOM2-L1-gf2-short-r5 1.92kB 11.41M 11.69kB 319.16M 11.29kB 314.82M

MQOM2-L1-gf16-fast-r3 1.67kB 6.64M 8.38kB 66.00M 7.51kB 51.64M

MQOM2-L1-gf16-fast-r5 1.67kB 6.64M 7.38kB 70.74M 6.74kB 49.44M

MQOM2-L1-gf16-short-r3 1.81kB 5.57M 8.26kB 186.48M 7.81kB 180.50M

MQOM2-L1-gf16-short-r5 1.81kB 5.57M 7.50kB 180.27M 7.14kB 167.50M

MQOM2-L1-gf256-fast-r3 1.81kB 5.26M 10.48kB 71.82M 8.94kB 64.98M

MQOM2-L1-gf256-fast-r5 1.81kB 5.26M 7.87kB 71.50M 6.86kB 59.31M

MQOM2-L1-gf256-short-r3 1.81kB 6.56M 9.95kB 232.24M 8.94kB 225.10M

MQOM2-L1-gf256-short-r5 1.81kB 6.56M 7.90kB 198.10M 7.30kB 192.87M

MQOM: MQ on my Mind 47

4 Security

4.1 Unforgeability

The MQOM signature scheme aims at providing unforgeability against chosen message attacks
(EUF-CMA). In this setting, the adversary is given a public key pk and they can ask an oracle
(called the signature oracle) to sign messages (msg1, . . . , msgr) that they can select at will. The
goal of the adversary is to generate a pair (msg, σ) such that msg is not one of requests to the
signature oracle and such that σ is a valid signature of msg with respect to pk.

Our security statement is based on the following assumptions:

• MQ hardness. Solving the considered MQ instance is (ϵmq, t)-hard for some (ϵmq, t)
which are implicit functions of the security parameter λ. Formally, any adversary A on
input a random MQ instance

(
{Ai}, {bi}, y

)
and running in time at most t has probability

at most ϵmq to output the solution x of the input instance.

• Random Oracle Modem (ROM). Our security statement holds in the ROM where
the (extendable-output) hash function XOF is modelled as a random oracle.

• Ideal Cipher Model (ICM). Our security statement holds in the ICM where the block
cipher Enc is modelled as an ideal cipher.

Based on the ROM and the ICM, the EUF-CMA security of MQOM holds from the soundness
and zero-knowledge properties of the underlying ZK-PoK (which are overviewed in Section 2.1).
The formal EUF-CMA security proof of MQOM will be added to a future version of the speci-
fication. It will heavily rely on usual techniques for MPC-in-the-Head signature schemes with
GGM trees such as, e.g., the security proof of MQOM v1 [FR23a; BFR24] with specificities
related to correlated GGM trees as in [KLS24].

4.2 Attacks against MQ instances

The security of the MQOM signature scheme relies on the hardness to solve an instance of the
multivariate quadratic problem, since the secret key is a solution of the MQ instance represented
by the public key. There exists many algorithms to solve the MQ problem. Their complexity
depends on several parameters: the number n of unknowns, the number m of quadratic equa-
tions, the size q of the field, the characteristic of the field, and the number of solutions. The
optimal algorithm might vary depending on the values of these parameters.

The best algorithms to solve polynomial systems are quite different over F2 and over larger
finite fields. While the global asymptotic complexity of most algorithms is well-understood,
estimating the concrete number of operations that is required to invert a given quadratic function
is more an art than a science.
Several software tools provide estimates of the number of operations required to execute

polynomial system solving algorithms, notably the MQEstimator [BMS+22] that is available in
the CryptographicEstimators software library [EVZ+24].
The estimates provided by such tools should always be taken with a grain of salt. When

estimating the number of bit operations required to run the F5 algorithm, we observed a no-
ticeable difference between the values given by version 1.1.1 (released on September 5th, 2023)
and version 1.2.0 (released on November 24th, 2023) of the MQEstimator library. This in turn
modifies the cost estimates for the hybrid-F5 algorithm. The results are shown in Table 15.

48 MQOM: MQ on my Mind

n m q
v1.1.1 v1.2.0 and v2.0.0

F5 hybrid-F5 (k) F5 hybrid-F5 (k)

36 36 256 150.3 111.5 (2) 203.8 143.2 (4)

Table 15: Cost estimates for solving quadratic systems with different versions of the
CryptographicEstimators library. v1.1.1 was released on September 5th, 2023 (git
commit 17924f39) and v1.2.0 was released on November 24th, 2023 (git commit
35bc27a1). The “F5” (resp. hybrid-F5) columns shows the log in base 2 of the num-
ber of “bit operations” required by the corresponding algorithm. For hybrid-F5, the
optimal number of “guessed” variables is given in parentheses.

The two versions also differ in the number of variables to “guess” in the hybrid-F5 algorithm.
These numbers can be obtained by the following bit of code (adjust with the required sizes):

q = 256

n = 36

m = 36

from cryptographic_estimators import MQEstimator

MQEstimator.MQEstimator(n, m, q).f5.time_complexity()

e = MQEstimator.MQEstimator(n, m, q).hybrid_f5

e.time_complexity(), e.k()

We traced down the difference between the two versions to a change in the default value of the
linear algebra constant, namely the value of ω such that matrix multiplications requires O (nω)
arithmetic operations. The best algorithms to solve polynomial systems heavily rely on either
sparse or dense linear algebra with exponentially large matrices. The best known value of the
linear algebra constant is ω = 2.3728596 [AW21] but it is well-known that the corresponding
algorithms are so impractical that they have never been implemented (they are “galactic”).
The CryptographicEstimators library switched from using w = 2 by default in version 1.1.1

to using w = 2.81 in version 1.2.0, which corresponds to the use of the Strassen algorithm.
This modification alone may explain the observed differences in cost estimates between the two
versions. We agree that the use of the Strassen algorith for dense linear algebra is practical: it
is implemented in M4RI and M4RIE [AB24] for binary matrices and in FFLAS/FFPACK [DGP08]
for matrices over larger finite fields.
In any case, we discuss below a number of shortcomings of the CryptographicEstimators library,

and discuss our own estimates.

4.2.1 Tools and building blocks

Arithmetic over F256. We consider that addition over F256 costs 8 bit operations (to XOR the
two operands). Bernstein proposed in 2000 an algorithm to multiply two degree-7 polynomials
over F2[X] in 100 bit operations. Once their degree-14 product has been computed, it must be
reduced modulo the irreducible polynomial that defines the finite field. Take F = X8 +X4 +
X3 +X + 1 (as given in Table 5). The remainder of a degree-14 polynomial modulo F can be
computed with 28 bit operations. Therefore we consider that multiplication requires 128 bit
operations.

Arithmetic over F16. Similarly, we consider that addition over F16 costs 4 bit operations. Two
degree-3 polynomials over F2[X] can be multiplied in 25 bit operations. Once their degree-6

MQOM: MQ on my Mind 49

product has been computed, it must be reduced modulo the irreducible polynomial that defines
the finite field. Take F = X4 + X + 1 (as given in Table 5). The remainder of a degree-6
polynomial modulo F can be computed with 6 bit operations. Therefore we consider that
multiplication requires 31 bit operations.

Monomials. It is well-known that there are
(
n+d−1

d

)
monomials of degree exactly d in n vari-

ables, and that there are
(
n+d
d

)
monomials of degree at most d.

The situation is slightly different in the binary case, where considering the effect of the so-
called “field equations” x2i = xi is beneficial. In this case, we mostly work in the Boolean
algebra

R2 = F2[x1, . . . , xn] /
〈
x21 − x1, . . . , x2n − xn

〉
.

In the Boolean algebra, there are
(
n
d

)
monomials of degree exactly d and there are

∑d
i=0

(
n
i

)
monomials of degree at most d. This last sum has no closed expression.
Lastly, in an arbitrary finite field Fq, we work in the algebra

Rq = Fq[x1, . . . , xn] / ⟨xq1 − x1, . . . , x
q
n − xn⟩ .

The number of degree-d monomials is the degree-d coefficient of the series(
1− zq

1− z

)n

=
(
1 + z + · · ·+ zq−1

)n
while the number of monomials of degree at most d is the degree-d coefficient of the series

1

1− z

(
1− zq

1− z

)n

Note that the number of degree-d monomials is precisely
(
n+d−1

d

)
when d < q.

Macaulay matrices. Consider a sequence of quadratic polynomials f1, . . . , fm in Fq[x1, . . . , xn].
Denote by I the ideal they span. I can be seen as an infinite-dimensional vector space spanned
by the mfj , where m ranges across all possible monomials. Let Id (resp. I≤d) denote the
subspace formed by the mfj where m ranges across all monomials of degree d (resp. at most
d). In general, Id is not equal to the set of all degree-d polynomials of I, because of potential
degree falls: some low-degree polynomials in I can only be obtained by taking a high-degree
polynomial combination of the fj . Both sets are equal only when the fj are a Gröbner basis of
I, a fact that was noted long ago by Lazard [Laz83].

Polynomials of I with a special shape can often be found effectively by means of linear algebra,
by searching inside I≤d for a sufficiently large d. The degree-d Macaulay matrix of f1, . . . , fm is
the matrix whose rows are the mifj with degmi ≤ d− 2 and whose columns correspond to all
possible monomials of degree at most d. It follows that the row span of the degree-d Macaulay
matrix is exactly I≤d.

The degree-d Macaulay matrix of f1, . . . , fm has
(
n+d
d

)
columns and m

(
n+d−2
d−2

)
rows. In the

Boolean case, it has
∑d

i=0

(
n
i

)
columns and m

∑d−2
i=0

(
n
i

)
rows.

Macaulay matrices are quite sparse, because each row has at most (n+ 1)(n+ 2)/2 non-zero
coefficients. It is well-known that they are also rank-deficient: there are linear dependencies
between rows, at least because of the trivial relations fifj = fjfi. Under the assumption that
the fj form a (semi-)regular sequence, then the above “trivial relations” between the fi’s are

50 MQOM: MQ on my Mind

the only ones, and thanks to that information the rank of the degree-d Macaulay matrix can
be determined precisely. The assumption implies that it only depends on n and m, and does
not depend from the actual coefficients of the fj ’s. The assumption essentially means that the
polynomials are not bound by “unexpected” algebraic relations. It is usually well-verified in
practice on unstructured systems, and is therefore standard in all the cryptographic literature.
The interested reader is referred to [Bar04; BFS15] for more details. We now assume that the
the fj ’s are (semi-)regular.

Consider the series expansion:∑
j

ajz
j = (1− z2)m/(1− z)n+1.

The smallest index j such that aj ≤ 0 is the solving degre of the semi-regular sequence
(see [CG23] for more details). When d is strictly less than the solving degree, then the rank of
the degree-dMacaulay matrix is

(
n+d
d

)
−ad (in the non-binary case). If d is equal or greater than

the solving degree, then the rank is just
(
n+d
d

)
(the number of columns). Instead of explicitly

working with the series, which requires tools from computer algebra, we use a simple recurrence
relations between the ranks of Macaulay matrices. Write Rd,j the rank of the degree-dMacaulay
matrix of f1, . . . , fj . Then

R0,j = 0

R1,j = 0

Rd,0 = 0

Rd,j+1 = Rd,j +

(
n+ d− 2

d− 2

)
−Rd−2,j

The last relation comes from observing the behavior of the matrix-F5 algorithm [Bar04; BFS15].
And finally Rd,m is equal to

(
n+d
d

)
− ad and is the rank of the degree-d Macaulay matrix, under

the assumption that the fj are (semi-)regular and that d is less than their solving degree. The

smallest d such that Rd,m is greater than or equal to
(
n+d
d

)
, which is the number of monomials

in n variables of degree at most d, is the solving degree of the fj ’s.
However, this is only valid in characteristic zero. Over Fq, there are other trivial relations,

namely f qi = f over Fq. Note that this last category of “trivial relations” only appear in degree
2q. Over the binary field, and taking into account the field equations, the same reasoning can
be applied, but the series is different:∑

j

ajz
j = (1 + z)n/(1 + z2)m/(1− z)

and the recurrence relation is also different:

Rd,j+1 = Rd,j +

(
d−2∑
i=0

(
n

i

))
−Rd−2,j+1

Finally, over Fq, to the best of our knowledge, the ranks of the Macaulay matrices are not
known in general. However, up to degree 2q, they can be predicted by a slight modification of
the “characteristic zero” case. The coefficients of the following series:∑

j

ajz
j = (1 + z2)m(1− zq)n/(1− z)n+1

MQOM: MQ on my Mind 51

predict the ranks of the Macaulay matrices of the corresponding degrees, as long as they are
strictly positive and the recurrence relation is also different:

Rd,j+1 = Rd,j + [#monomials of degree d− 2]−Rd−2,j .

We note that, in general, the solving degree is the degree of regularity of a homogeneous
(semi-regular) system of the same number of polynomials with one more variable.

Solving sparse linear systems with the block Wiedemann algorithm. In order to solve Ax = b
with a sparse matrix A, the Block Wiedemann algorithm is usually the solution of choice. We
refer the reader to [CCN+12; BGG+20] for details about the algorithm and practical results.
It has two main parameters, the “blocking factors”, that we denote by m̃ and ñ. Let N denote
the size of the matrix and |A| denote the number of non-zero entries in A.

The bulk of the workload consists in “matrix-vector products”, that are in fact (sparse N×N
matrix) × (dense vector) products. It follows that each matrix-vector product requires 2|A| field
operations (half additions and half multiplications). The block Wiedemann algorithm has three
phases:

BW1 Compute the Krylov sequence (uAiv)i. Split in ñ independent jobs. Each job does
(1/ñ+1/m̃)N iterations in sequence. Each iteration does a “sparse matrix-dense vector”
as described above, followed by a (dense m̃ × N matrix) × vector product that requires
2Nm̃ operations (half additions, half multiplications). In total, there are (1 + ñ/m̃)N
iterations aggregated over the ñ independent jobs. After each iteration, a dense vector
of size m̃ must be stored persistently. The total output size of the ñ independent jobs is
therefore (m̃+ñ)N field elements. This phase requires (1/ñ+1/m̃)N sequential steps, even
if the matrix-vector product itself is perfectly parallel. The total number of arithmetic
operations is 2(1 + ñ/m̃)N(|A|+ m̃N).

BW2 Compute the linear recurrence relation of the Krylov sequence. Its input consists in
(m̃ + ñ)N field elements, it has quasi-linear running time complexity, and parallelizes
well. Its memory usage may not be negligible though.

BW3 Assemble the solution from the linear recurrence. Can be split in a very high number of
independent jobs. Does N/ñ “sparse matrix-dense vector” products in total.

Choosing the optimal values of ñ and m̃ is somewhat of an art. It is usual to choose m̃/ñ = 2
or m̃/ñ = 3. This yields a total workload of (1.5 + 1/n)N or (1.333 + 1/ñ)N iterations,
respectively. Increasing ñ reduces the total time spent in BW3, and if m̃/ñ is fixed, it does
not increase the running time of BW1. However, increasing ñ will increase the running time
and the memory footprint of BW2. Note that increasing ñ has another practical advantage, by
increasing the level of coarse-grained parallelism in BW1.

4.2.2 Solving polynomial systems over “large” finite fields

We discuss in particular the cases of F256 and F16.

The XL algorithm. The XL algorithm was proposed by Courtois, Klimov, Patarin and Shamir
[CKP+00] in 2000. In fact, it turned out to be a reinvention of a technique due to Lazard in
1983 [Laz83], and is more-or-less equivalent to modern Gröbner basis algorithms. What we say
below about algorithmic and practical aspects is mostly based on the existing implementation

52 MQOM: MQ on my Mind

of [CCN+12], that has been demonstrated to work and currently holds several computational
records. It is capable of running a parallel computation using a cluster of machines. It was
notably used in Beullens’s practical cryptanalysis of Rainbow [Beu22]. This particular imple-
mentation works only over F16 and F31.
The underlying idea of the XL algorithm is simple. Pick a degree d such that the degree-d

Macaulay matrix has full rank (this is typically the solving degree). Cut the column correspond-
ing to the constant monomial. Call the resulting vector b and the truncated matrix A. Solve
the linear system Ax + b = 0. If the original polynomial system had a single solution x̂, then
this linear system also has a single solution where the coordinates of x describe the values of all
possible monomials of degree at most d, evaluated over x̂. Note that this linear system is sparse,
and can be solved using the block Wiedemann algorithm. Also, because we are only interested
in the value of degree-1 monomials, it is sufficient to recover only a very small fraction of the
solution vector. This allows the implementation of [CCN+12] to use an unpublished trick that
bypasses the BW3 step almost completely.
The number of columns of A is the number of monomials of degree at most d in n variables

over Fq. It has much more rows than columns, and the rows have linear dependencies. The
aforementioned implementation uses the following heuristic: a random subset of the rows is
extracted to obtain a nearly square matrix, which is full-rank with high probability. Solving
the input polynomial system is thus reduced to solving a sparse linear system of dimension N
(the number of monomials at most d in n variables over Fq) with

(
n+2
2

)
non-zero coefficients per

row, using the block Wiedemann algorithm. Denoting by ñ and m̃ the two blocking factors of
the block Wiedemann algorithm, it follows from the discussion above that the total number of
arithmetic operations in the BW1 step is approximately:

2

(
1 +

ñ

m̃

)
N2

((
n+ 2

2

)
+ m̃

)
Over F256, we can safely assume that N =

(
n+d
d

)
, because the solving degree d is always going

to be less than 512. However, over F16, this is no longer going to be the case if the solving
degree is greater than 16.
To estimate the total number of operations, we ignore the costs of the BW2 and BW3 steps

(the latter is almost zero), and assume that exactly N matrix-vector products take place. In
other terms, we assume that ñ/m̃ ≈ 0 and that m̃ ≪ n2. This gives a lower-bound on the
number of operations.

The hybrid method. The “hybrid method” [BFP09; BFP12] is usually the best technique for
solving polynomial systems over finite fields. Its principle is simple:

1. Choose 0 ≤ k ≤ n.

2. “Guess” the value of k variables.

3. Solve the remaining system of m equations n − k variables using the F5 of the XL-
Wiedemann algorithm.

4. If no solution has been found, return to step 2.

The point is that the sub-systems that are actually solved in step 3 are more overdetermined
than the input system, and therefore have a much lower solving degree. The resulting Macaulay
matrices are thus much smaller.

MQOM: MQ on my Mind 53

There is an optimal number k of variables to guess. The asymptotic complexity of this
procedure is determined in [BFP12] when n→ +∞ with q and the ratio m/n fixed, under the
assumption that the input system is sufficiently generic. Concretely, the optimal number of
variables to guess depends on n,m, q and on the secondary algorithm used to solve the resulting
polynomial systems.

The “polynomial XL” algorithm of [FK24]. This algorithm can be seen as a (slight) gener-
alization of Crossbred. In the end, it uses the hybrid method combined with the XL algorithm,
but tries to perform a big precomputation to accelerate the subsequent resolution of polynomial
systems.
It partitions the n input variables x = (x1, . . . , xn) in two categories. Say that they are

relabeled as x = (y1, . . . , yk, z1, . . . , zn−k). The input polynomials are seen over the polynomial
ring Fq[y][z], i.e. as polynomials in the z’s whose coefficients are polynomials in the y’s. The
y’s are the variable that will be “guessed”, leading to a polynomial system in the z’s.

The preprocessing step consists in finding at least α (linearly independent) degree-d polyno-
mials in the ideal spanned by the fi such that the total number of distinct monomials in the
z’s that appear in these new polynomials is at most α.

Once this is done, the y’s are fixed to a random value, and the resulting system of α polyno-
mial equations in the z’s can be solved by linearization, by considering each of the possible α
monomials as an independent variable.
The authors of Polynomial-XL (PXL) described a specific echelonization procedure to produce

these α polynomials. Hence, this uses dense linear algebra on Macaulay matrices.
There is an effective way to predict the value of α, as well as the total number of field

coefficients of the matrix after the end of the preprocessing. In [FK24], the authors estimate
the number of operation of their algorithm using either ω = 2.37 or ω = 2.81. We believe
that only the second choice is reasonable. In this case, the gains claimed in [FK24] over the
hybrid-XL-Wiedemann algorithm are modest (a factor of two for the largest examples).
What PXL and Crossbred have in common is that they have a preprocessing step (based on

linear algebra in Macaulay matrices) that finds “special” polynomials in the ideal spanned by
the input equation. These special polynomials are restricted to only have certain monomials.
In Crossbred, the only allowed monomials are those where the z’s occur with degree at most

d. Thus, once the y’s are fixed, we are left with a degree-d polynomial system in n−k variables.
Existing practical implementations use d = 1, so the resulting linear system is small and easy
to solve.
In PXL, the choice of allowed monomials is a bit more flexible, as there is no fixed upper-

bound on their degree. The only condition is that their number must not be too large (once
the y’s are erased). In [FK24], the authors of PXL suggest a specific algorithm to select them,
but in fact they could be chosen somewhat arbitrarily. In most cases, there is a value of d that
yields almost the same number of polynomials with the Crossbred algorithm. The complexity
of both algorithms therefore cannot be very different.

Parameters, estimations and discussion. Table 17 shows our choice of parameters for q = 256,
along with our estimations of the complexity of running the (hybrid-)XL-Wiedemann (WXL)
algorithm and the “Polynomial XL” (PXL) algorithm.
Even though an implementation of WXL is available, it is both quite difficult and a bit

meaningless to predict its actual running time on a specific platform (e.g. “100 billion years
on a single core of an Intel Xeon Gold 6230”), if only because the computation is meant to

54 MQOM: MQ on my Mind

Level I III V

n 48 72 96

WXL

k 3 5 8

D 22 28 33

log2N 57.9 79.6 98.7

log2 |A| 68.0 90.8 110.6

cost 157.0 217.5 280.4

PXL

k 5 7 9

D 17 24 30

log2 α 36 54.6 73

log2 |A| 86.5 128.9 169

cost 148 216 283

Table 16: Parameter choice with q = 256. For WXL, N denotes the size of the (sparse) matrix
and |A| denotes its number of non-zero coefficients. For PXL, α denotes the size of
the (dense) matrix with polynomial entries resulting from the preprocessing and |A|
denotes its number of field coefficients. In both cases, |A| is thus a reasonable estimate
of the size of the matrix.

Level I III V

n 56 84 116

WXL

k 13 17 24

D 13 19 24

log2N 40.8 62.2 81.9

log2 |A| 50.7 73.5 94.0

cost 150.6 210.8 278.9

PXL

k 12 17 26

D 14 19 23

log2 α 32 48.6 62.7

log2 |A| 79.3 116.3 149.2

cost 142.8 209.3 284.9

Table 17: Parameter choice with q = 16. N denotes the size of the (sparse) matrix and |A|
denotes its number of non-zero coefficients.

MQOM: MQ on my Mind 55

be infeasible. The actual obstacle to this more concrete estimate is the block-Wiedemann
algorithm.
In the context of the Number Field Sieve, the block-Wiedemann algorithm has been executed

in practice on a matrix of size 36M with 250 element per rows over a large finite field (to
compute a discrete log), and on a matrix of size 400M with 250 elements per row over F2 (to
factor RSA-250). Details of these computations are reported in [BGG+20]. In the context
of the XL-Wiedemann, it was executed on a matrix of size 45M over F31. Details of the
computation have been inferred by us, with some information available on the MQchallenge
website. The BW1 step requires days of sequential processing (100, 18 and 19 days for the
three described computations, respectively). By itself, this is a serious practical hurdle, and it
is not completely obvious that the algorithm “practically” scales to larger sizes. In [BGG+20],
the authors conclude:

[...] with adequate parameter choices, large sparse linear systems occurring in NFS
computations can be handled, and at this point we are not facing a technology
barrier.

However, the matrix sizes considered above are many orders of magnitude larger than those
that have been dealt with in practice.
From a practical point of view, it is difficult to predict the actual running time (in hours)

of the block-Wiedemann algorithm, even when the computation is practical. The process is
well-known to be memory-bound or communication-bound, so the number of operations is not
necessarily well-correlated to the actual running time. Choosing the blocking factors is not
completely obvious either. If it is possible to measure the actual running time of one iteration,
then the actual running time of the algorithm can be fairly well evaluated. However, predicting
the time taken by the matrix-vector product is difficult: it depends on the hardware, on the
shape of the matrix, on the clustering of entries inside it, etc.

4.2.3 Special case of Boolean systems

Estimating the difficulty of solving Boolean polynomial system is challenging because of the
tension between “galactic” algorithms with the best asymptotic complexity and practically
efficient ones.
Exhaustive search is the baseline method to solve systems of Boolean quadratic polynomial

equations, with a running time Õ (2n) and negligible space complexity. An FPGA implemen-
tation of exhaustive search [BCC+13] was used to break LUOV in practice [DDV+21].

Yang and Chen [YC04] discussed the asymptotic complexity of the hybrid method applied
to Boolean system (along with the optimal number of variables to guess). The BooleanSolve
algorithm of Bardet, Faugère, Salvy and Spaenlehauer [BFS+13] is the best embodiment of
the hybrid method at this point, with running time Õ

(
20.792n

)
on average, under algebraic as-

sumptions. It guesses some variables, then checks if a polynomial combination of the remaining
polynomials is equal to 1. If it is the case, then the guessed values are incorrect (by Hilbert’s
Nullstellensatz). Checking this is accomplished by deciding whether large sparse linear systems
have a solution (using the block-Wiedemann algorithm). The inventors of BooleanSolve claim
that it is slower than exhaustive search when n ≤ 200. However, this threshold should be
treated with caution in the absence of an implementation.
The Crossbred algorithm of Joux and Vitse [JV17] also belongs to the “guess variables then

solve a linear system” family of algorithms. Its asymptotic complexity is not precisely known,
but its practical efficiency is spectacular: it has been used to solve record-size random systems

56 MQOM: MQ on my Mind

with n = 83 variables and m = 186 equations, and with m = 76 equations in n = 114
variables. These are the current record. It is the first algorithm that has beaten brute-force
in practice on random non-overdetermined systems. The original implementation by Joux and
Vitse is not public. However, there are two public implementations: one that uses GPUs by
Niederhagen, Ning and Yang [NNY18], and another more competitive one by Bouillaguet and
Sauvage (https://gitlab.lip6.fr/almasty/hpXbred — this one holds the current records).
A completely different family of algorithms emerged in 2017 when Lokshtanov, Paturi, Tamaki,

Williams and Yu [LPT+17] presented a randomized algorithm of complexity Õ
(
20.8765n

)
based

on the “polynomial method”. In strong contrast with almost all the previous ones, it does not
require any assumption on the input polynomials, which is a theoretical breakthrough. The
algorithm works by assembling a high-degree polynomial that evaluates to 1 on partial solu-
tions, then approximates it by lower-degree polynomials. The technique was later improved by
Björklund, Kaski and Williams [BKW19], reaching Õ

(
20.804n

)
, then again by Dinur [Din21c],

reaching Õ
(
20.6943n

)
— this is “Dinur’s first algorithm”.

Noting that the self-reduction that results in this low asymptotic complexity only kicks in
for very large values of n, Dinur proposed a simpler, lightweight version of his algorithm for
the crypto community with complexity O

(
n220.815n

)
using less than n220.63n bits of mem-

ory [Din21a]. This one is known as “Dinur’s second algorithm”.
The main problem in choosing parameters is to estimate the number of operations of Dinur’s

algorithms (the first one in particular). It would be possible to “play safe” by choosing n =
λ/0.6943, where λ is the desired security level, assuming that the hidden polynomial factors in
the “big Oh tilde” are equal to one. This suggests choosing n = 208 for security level I. But in
fact, the concrete number of operations required to run the algorithm is much higher than just
20.6943n.

The crossbred algorithm. Because of its practical success, it seems fair to assess the efficiency
of the Crossbred algorithm. We note that it is the first algorithm that has been capable of
“beating brute force” in practice.
Just like Polynomial XL, the Crossbred algorithm partitions the n input variables x =

(x1, . . . , xn) in two categories. Say that they are relabeled as x = (y1, . . . , yk, z1, . . . , zn−k).
Its preprocessing step returns polynomials in which the z variables only occur with degree d.
When the y variables are fixed to some value, we are left with a much smaller polynomial system
that can be solved by linearization. In practical implementations, d = 1.

Finding these polynomials can be seen as finding vectors in the (left-)kernel of a Macaulay
matrix in which some columns have been removed. It follows that there are essentially two
cases: if d = 1, then the number of polynomials that must be found is small, and they can be
found efficiently by the block-Wiedemann algorithm. The Macaulay matrix remains in sparse
representation and linear algebra is essentially quadratic. Otherwise, if d ≥ 2, many kernel
vectors must be found and dense Gaussian elimination is the only reasonable way to find them.
In this case, the Macaulay matrix is in dense representation and linear algebra takes time
O (Nω).

We consider that the CryptographicEstimators library has several shortcomings in its estima-
tion of the complexity of Crossbred:

• It overestimates the space complexity by assuming a dense representation of the Macaulay
matrix in the preprocessing step, even when it considers the possibility of using the Wiede-
mann algorithm (that allows the use of a sparse matrix). The hpXbred implementation
uses a sparse matrix.

https://gitlab.lip6.fr/almasty/hpXbred

MQOM: MQ on my Mind 57

• It underestimate the running time of the exhaustive search phase by assuming that linear
algebra runs in nω operations, even when the matrices are very small (when d = 1), when
only the cubic algorithm makes sense.

• It overestimate the running time by ignoring the beneficial effect of external hybridation
(it allows to increase the number of variables that are not exhaustively searched — see
below).

• It overestimates the running time of the preprocessing step by assuming that the Wiede-
mann algorithm requires 3N matrix-vector products, when the block-Wiedemann algo-
rithm with proper parameter choice (m = 2n, n ≥ 4) can require ≤ 1.75N .

Here is an example of a slight overestimation by the CryptographicEstimators library (v2.0.0,
git commit 0d9bd3f925e):

>>> from cryptographic_estimators import MQEstimator

>>> pb = MQEstimator.MQProblem(n=160, m=160, q=2)

>>> MQEstimator.Crossbred(pb).time_complexity() # no external hybridation

151.16564211027884

>>> MQEstimator.Crossbred(pb, h=3).time_complexity() # start by guessing 3 variables

150.43226492985866 # the result is better

We have some practical experience with the Crossbred algorithm, acquired by assembling the
hpXbred high-performance implementation and using it to obtain all the current computational
records of the MQChallenge website over F2. In the process, we have developped our own
estimator (if only to choose parameters for actual computations).

An (unpublished) reduced-space hybrid method. It is well-known that, given a Boolean
quadratic polynomial f , it is easy to find an invertible matrix S (a linear change of variables)
such that (Sx) = x1x2+x3x4+ · · ·+xn−1xn+(linear terms). If all the variables with odd index
are “guessed”, then f(Sx) becomes linear. This allows to express one of the variables as a linear
function of the others, and reduces the number of variables (and of polynomial equations) by
one. It follows that a quadratic system with n equations in n variables can be solved by solving
2n/2 systems with n− 1 equations in n/2− 1 variables.
This technique can be improved. It follows from [MPG13, Proposition 3] that, given two

Boolean quadratic polynomials f and g, there is (often) a linear change of variables S such that
f(Sx) and g(Sx) are simultaneously simplectic. It follows that guessing half of the variables
simultaneously turn f(Sx) and g(Sx) into linear functions. It follows that a quadratic system
with n equations in n variables can be solved by solving 2n/2 systems with n − 2 equations in
n/2− 2 variables.
This (unpublished) trick was used by the hpXbred implementation to obtain computational

records in the “underdetermined” challenges category (where many variables can be “guessed”
without reducing the success probability of the computation). The resulting subsystems are
quite overdetermined, and the Crossbred algorithm performs well in this case. We call the
resulting combination Crossbred+. It always requires much less space than the “normal” Cross-
bred and is usually almost as fast.

Dinur’s second algorithm. Because of the lack of any serious implementation, Dinur’s algo-
rithms pose the greatest challenge to a concrete estimation. This is probably not going to

58 MQOM: MQ on my Mind

change because it seems likely that these algorithms cannot be competitive for any computa-
tion that can be carried out in practice. Dinur’s second algorithm takes a parameter named n1
in [Din21b]. Write:

N =

n1+3∑
i=0

(
n− n1
i

)
The algorithm has two dominating phases:

1. It needs to find all solutions of N quadratic systems of n1 + 1 equations in n1 variables
(by brute force).

2. Then, a collection of n1 polynomials of degree n1+3 in n−n1 variables must be interpolated
and evaluated on all the 2n−n1 possible inputs. Each such polynomial has N coefficients.

The space requirement of the algorithm is essentially (n1 + 1)N bits (to store these large
polynomials). The value of n1 is chosen to balance the costs of these two phases. The first
phase is executed using the FES algorithm. To perform the second phase, Dinur described a
memory-efficient version of the Moebius transform that evaluates a degree-d polynomial in n
variables on all the 2n possible inputs in time less than n2n, using only twice the amount of
memory needed to store the polynomial. We believe that the number of bit operations needed
to complete the interpolation is quite underevaluated in [Din21b], for the following reason. It
is stated in [Din21b] that:

We estimate the complexity of a straight-line implementation of our algorithm by
counting the number of bit operations (e.g., AND, OR, XOR) on pairs of bits. This
ignores bookkeeping operations such as moving a bit from one position to another
(which merely requires renaming of variables in straight-line programs).

In other terms, a statement such as:

A[2015494782137237151]← A[8910305899308506505]⊕A[14034715819129815024]

counts as a single bit operation. The time complexity of the attack is taken as the number of
such statements. The problem is that this computational model is non-uniform: each statement
representing a single bit operation contains three n-bit memory adresses that are “hard-coded”
into the “code” of the procedure. The size of the procedure itself, measured in bits, is then larger
than its number of statement by a factor of about 3n. Generating the code of the procedure is
clearly more costly than executing it (in fact, the code may contain an “advice” of size linear
in that of the input). At first glance, it is not really obvious how to compute the array indices
“on the fly”.
Bouillaguet [Bou24] has shown that the memory-efficient Möbius transform described by

Dinur in [Din21b] can be implemented in the C language (with a single, fixed program for all
possible input sizes) with a running time of O (d2n) “elementary” operations on n-bit words
(mostly additions). But this clearly requires more bit operations than the number claimed
in [Din21b]. Experiments in [Bou24] suggest at least 20 CPU cycles per “bit operation”. There-
fore, we (optimistically) consider that the cost of the memory efficient Möbius transform is
about 20nd2n “gates” (this assumes that an elementary operation on n-bit words translates to
exactly n gates).
In addition, we expect the space requirements to make the algorithm completely impractical.

MQOM: MQ on my Mind 59

Level I III V

n 160 240 320

Crossbred

h 3 4 3

D 13 20 27

k 31 44 56

log2N 61.7 95.9 130

log2 |A| 75.3 111 145

Cost 144 213 282

Crossbred+

h 86 122 160

D 5 8 11

k 26 38 51

log2N 23.6 39.2 54.6

log2 |A| 37.3 54 70.4

Cost 147 216 285

Dinur 1st

n1 39 58 80

n2 33, 0 52, 41, 33, 0 74, 61, 51, 43, 36, 31, 0

Space 129 190 248

Cost 160 223 283

Dinur 2nd

n1 34 49 64

Space 107 158 208

Cost 148 214 280

Table 18: Parameter choice with q = 2.

Dinur’s first algorithm. While having the best asymptotic complexity, Dinur’s first algorithm
suffer from a high concrete complexity for relevant instance sizes. In general, the algorithm
returns the parity of the number of solutions (“does the polynomial system have an odd number
of solutions?”). If we assume that the polynomial system has at most one solution, then this
solves the decisional version of the problem (“does the system have a solution?”). The search-
to-decision reduction “guesses” the first variable and checks if a solution still exists. It then
proceeds with one less variable.

The algorithm is recursive, and each recursive calls need to choose a parameter (n1 at the
root, n2 below). We searched for the best values exhaustively and implemented an estimator
to determine its number of operations.
We applied the same penalty of a factor 20n to the Möbius transform as in Dinur’s first

algorithm.
We believe that, because the algorithm is complex and has never been implemented, any

concrete estimation of its complexity should be taken with caution. Further “practical” im-
provements may be discovered if an implementation is ever attempted. However, the huge
space complexity of the algorithm makes this unlikely.

Parameters, estimations and discussion. Using the hpXbred software, the running time of
the Crossbred+ algorithm on the level-I parameter set can be determined on currently existing
hardware. It solves 286 subsystems of 158 quadratic equations in 72 variables. Solving each

60 MQOM: MQ on my Mind

subsystem requires 2375 CPU.h on a single machine (a PowerEdge C6420 blade equipped with
two Intel Xeon Gold 6130 CPUs). This makes a total of 2× 1025 CPU-years on this hardware
platform. More precisely, the running times breaks down as follows:

1. BW1: 685 CPU.h

2. BW2: 25 CPU.h

3. BW3: 140 CPU.h

4. Enumeration: 1525 CPU.h

The matrix processed by the block-Wiedemann algorithm has dimension 8.86M and 6.5G
non-zero entries. The BW1 and BW3 step total 258 operations, that are executed at about
99.25Gop/s by the machine. The enumeration step has 260.3 operations that are executed at
260.6Gop/s by the machine. The difference is most likely explained by the fact that the block-
Wiedemann algorithm suffers more from the cost of memory accesses. Note that the peak
performance of a single core is about 2150Gop/s (2 × 512-bit AND per cycle at 2.1GHz).

MQOM: MQ on my Mind 61

5 Design choices

This section presents the design rationale of MQOM v2 in relation to the existing literature.
Recent advancements in the field have led to signature schemes that are more efficient, more
compact, and (sometimes) inherently simpler than their predecessors. We explain the rationale
behind our design choices, which were made with an emphasis on simplicity in both design and
implementation.

5.1 Threshold-Computation-in-the-Head

The design of MQOMv1 relied on the MPC-in-the-Head paradigm with additive sharings. Since
then, two new frameworks have been introduced: the VOLE-in-the-Head (VOLEitH) frame-
work [BBD+23] and the Threshold-Computation-in-the-Head (TCitH) framework [FR23b]. These
new frameworks provide MQ-based signatures that are roughly half the size of MQOMv1 sig-
natures, while also reducing computational costs. For these reasons, we decided to adopt one
of these two frameworks in the development of MQOM v2.

TCitH vs. VOLEitH. While the line commitment scheme in TCitH-GGM only supports
opening evaluations over a small domain Ω (with |Ω| = N being the size of the GGM tree), the
VOLEitH framework supports evaluations over a domain of size N τ by combining τ instances
of the small-domain line commitment scheme. As a result, VOLEitH achieves a soundness
error of 2

Nτ , compared to
(
2
N

)τ
with the TCitH-based protocol repeated τ times. This implies

that, for a given security level, τ can be slightly smaller in VOLEitH, often leading to reduced
communication costs compared to TCitH-GGM.
On the other hand, the resulting large-domain line commitment scheme of VOLEitH requires

a statistical consistency test, introducing an additional round of interaction between the prover
and verifier in the underlying ZK PoK protocol. This slightly increases the overall communi-
cation and necessitates working over a large field extension (typically a λ-bit extended field).
For signature schemes with a small secret witness –which is the case of the MQ solution x
in MQOM–, this slight increase mitigates the TCitH overhead. As a consequence, the TCitH
framework remains competitive in terms of signature size while enjoying a structurally simpler
design.
In Table 19, we present the signature sizes for a variant of MQOM v2 based on the VOLEitH

framework. We apply the same optimizations to this variant as in the TCitH-based version,
including correlated trees and grinding (see the following subsections). Our results show that
the short signature variants yield comparable sizes across both frameworks, while the fast signa-
ture variants are slightly smaller with the VOLEitH framework. Given this close proximity in
signature size and the greater simplicity of the TCitH framework (no consistency check, smaller
field extension), we ultimately chose to adopt the TCitH framework.

The sigma variant. In the considered PIOP protocol (see Section 2.1.2), the first verifier
challenge is designed to batch multiple polynomials in order to reduce their communication
cost. Instead of sending the m̂ coordinates of the vector polynomial Pz (masked with Pu), the
prover sends η < m̂ random linear combinations of them, that is the vector polynomial Γ · Pz

(still masked with Pu, which is the vector polynomial Pα). We observed that the size saving due
to this batching interaction is rather small for MQOM, in particular for the F2 instances. On the
other hand, skipping the batching interaction results in a protocol with lower round complexity,

62 MQOM: MQ on my Mind

Framework MQOM2 – TCitH VOLEitH

Statistical Batching Without (3r) With (5r) Without (3r) With (5r)

MQOM2-L1-gf2-short 2 868 2 820 2 966 (+3%) 2 790 (-1%)

MQOM2-L1-gf16-short 3 060 2 916 3 054 (-0%) 2 878 (-1%)

MQOM2-L1-gf256-short 3 540 3 156 3 450 (-3%) 3 098 (-2%)

MQOM2-L1-gf2-fast 3 212 3 144 3 294 (+3%) 3 054 (-3%)

MQOM2-L1-gf16-fast 3 484 3 280 3 414 (-2%) 3 174 (-3%)

MQOM2-L1-gf256-fast 4 164 3 620 3 954 (-5%) 3 474 (-4%)

MQOM2-L3-gf2-short 6 388 6 280 6 788 (+6%) 6 380 (+2%)

MQOM2-L3-gf16-short 6 820 6 496 6 992 (+3%) 6 584 (+1%)

MQOM2-L3-gf256-short 7 900 7 036 7 910 (+0%) 7 094 (+1%)

MQOM2-L3-gf2-fast 7 576 7 414 7 484 (-1%) 6 932 (-7%)

MQOM2-L3-gf16-fast 8 224 7 738 7 760 (-6%) 7 208 (-7%)

MQOM2-L3-gf256-fast 9 844 8 548 9 002 (-9%) 7 898 (-8%)

MQOM2-L5-gf2-short 11 764 11 564 12 170 (+3%) 11 434 (-1%)

MQOM2-L5-gf16-short 12 664 12 014 12 584 (-1%) 11 848 (-1%)

MQOM2-L5-gf256-short 14 564 12 964 14 194 (-3%) 12 722 (-2%)

MQOM2-L5-gf2-fast 13 412 13 124 13 370 (-0%) 12 378 (-6%)

MQOM2-L5-gf16-fast 14 708 13 772 13 928 (-5%) 12 936 (-6%)

MQOM2-L5-gf256-fast 17 444 15 140 16 098 (-8%) 14 114 (-7%)

Table 19: Comparison of MQOM v2 with its variant over VOLEitH. All the signature size are in
bytes. The trade-off “short” relies on GGM trees with 2048 leaves, while the trade-off
“fast” relies on GGM trees with 256 leaves. While τ would be larger using TCitH
than using VOLEitH, the number of the expanded bits using PRG on tree leaves is
larger using VOLEitH than using TCitH (until a factor +90%), because of the mask
for the consistency check.

3 instead of 5, and arguably simpler design.4 We have chosen to propose both options –with and
without batching interaction– in the development of MQOM v2. Namely, we propose a 3-round
variant (the “sigma variant”) and a 5-round variant of MQOM. The 5-round variant features
smaller signature sizes while the 3-round variant is simpler, easier to implement and could be
more amenable in some specific contexts due to its lower round complexity. To the best of
our knowledge, the sigma variant of MQOM v2 is the first signature scheme built upon a sigma
protocol with recent MPCitH techniques (i.e., not relying on a protocol with helper [KKW18;
Beu20] or suffering high soundness error as early MPCitH schemes [GMO16; CDG+17]).

Witness encoding as constant term versus as leading term. In the TCitH and VOLEitH
frameworks, we encode the secret witness x in a polynomial Px. There are two main options
for encoding: either we construct Px so that Px(0) = x, encoding the witness as the constant
term, or we define Px so that Px(∞) = x, encoding the witness as the leading term.
The TCitH framework [FR23b] originally suggested encoding the witness as the constant term,

4With the VOLEitH framework, skipping the batching interaction also lowers the round complexity from 7 to
5.

MQOM: MQ on my Mind 63

which is the most traditional approach in the literature when using Shamir’s secret sharing. In
contrast, the VOLEitH framework suggests encoding the witness as the leading term of the
(degree-1) polynomial. However, both frameworks do not mandate a specific encoding; we
can choose to encode the witness as the leading term in TCitH and as the constant term in
VOLEitH.
Each option has its advantages and disadvantages. Encoding the witness as the constant

term requires special handling to avoid evaluation at the zero point, and we must use “infinity”
point when N = |F|. It also necessitates dealing with the inversion of some publicly known
field elements. On the other hand, encoding the witness as the leading term results in a simpler
implementation since no inversion is required and we avoid the special “infinity” point when
N = |F|. This makes it possible to use the canonical injection of {0, . . . , N−1} into field elements
for Ω. However, this approach results in a slightly higher number of field multiplications,
as we need to account for the homogeneous form of the MQ constraints. For the sake of
implementation simplicity, we have chosen to encode the witness as the leading term of Px in
MQOM v2.

5.2 GGM trees

Recent improvements have made the arithmetic part of MPCitH-based signature schemes more
efficient, shifting the computational and communication bottleneck to the symmetric part, par-
ticularly GGM trees. Consequently, several recent works have focused on optimizing the sym-
metric part, primarily by improving all-but-one vector commitments based on GGM trees.

Half-Tree technique [GYW+23; CLY+24; BCD24]. The half-tree technique has been pro-
posed in [GYW+23] and has been first introduced in to the MPCitH context in [CLY+24;
BCD24]. This technique aims to optimize the tree derivation, i.e. how two children nodes are
generated from the parent node. Instead of using a double-length pseudorandom generator, it
consists of deriving the first child y from the parent x using a symmetric primitive and building
the second child z as z := x ⊕ y, where ⊕ is the XOR operation. This derivation maintains
the core security property of tree derivation: revealing one child node should not disclose any
information about its sibling. Specifically, if revealing y does not leak information about x, then
it also does not reveal anything about z = y ⊕ x, as x masks it. Likewise, revealing z does not
disclose any information about y = x⊕ z.

In MQOM v2, we use the half-tree optimization to halve the cost of the tree derivation and
because it unlocks a second optimization described below.

Correlated Trees [HJ24; KLS24]. Besides the computational advantage of the half-tree tech-
nique, the latter has an interesting property: a tree derivation when using the half-tree preserves
the XOR. It implies that the XOR of all the nodes at a same depth is the same across the en-
tire tree. This means that the committer can control the XOR-sum δ of all the leaf seeds (by
originally introducing this difference between the two child nodes of the root). Then, replacing
the pseudorandom tape PRG(seed) by seed ∥ PRG(seed), the XOR-sum δ is further enforced to
the λ first bits of the random tapes. This makes it possible to save λ bits of communication in
the correction value ∆x by fixing δ to the λ first bits of x, thus leading to shorter signatures.

In MQOM v2, we use this optimization, namely we use correlated trees to save τ · λ bits in
the signature.

64 MQOM: MQ on my Mind

One-tree optimization [BBM+24]. Some combinatorial optimizations of the GGM trees has
been proposed in [BBM+24]. The MPCitH/TCitH/VOLEitH-based schemes always use τ GGM
trees. For each of them all the leaves except one are opened. Instead of considering τ indepen-
dent GGM trees of N leaves in parallel, the authors of [BBM+24] suggest using a unique large
GGM tree of τ ·N leaves. The ith leaf of the eth tree becomes the (e ·N + i)th leaf of the large
unique tree. As explained in [BBM+24], “opening all-but-τ leaves of the big tree is more efficient
than opening all-but-one leaves in each of the τ small trees because with high probability some
of the active paths in the tree will merge relatively close to the leaves, which reduces the number
of internal nodes that need to be revealed.” Then, the authors propose to improve the previous
point using some rejection sampling and grinding. When the last Fiat-Shamir challenge is such
that the number of releaved nodes in the revealed sibling paths exceeds a threshold, the signer
rejects the challenge and recompute the hash with an incremented counter. This process is
repeated until the number of revealed nodes is below the fixed threshold. One can show that
the approach leads to secure scheme even if the challenge space is reduced, because the security
loss is compensated by the computational cost of searching a valid challenge.

Let us stress that this optimization is not compatible with the correlated-tree optimization.
In MQOM v2, we did not consider this optimization because it complicates the design and
implementation. First, using this large tree of τ ·N prevents from using a complete binary tree
(since τ is usually not a power of 2), and so one needs to handle leaves of different depths. Then,
while conceptually easy to understand, this optimization requires dealing with path merging
which is tricky in terms of implementation. Finally, while path merging saves communication,
it introduces variability in the signature size, which we prefer to avoid. For completeness, we
present in Table 20 the signature sizes we would obtain if we used the one-tree optimization,
instead of correlated trees.

Relaxed vector commitment [KLS24]. A recent work [KLS24] proposes a new idea to slightly
improve the efficiency of GGM-tree all-but-one vector commitments. It consists in relaxing the
vector commitment scheme by committing each leaf of the GGM trees using λ-bit digests instead
of 2λ-bit digests. While this relaxation breaks the standard notion of binding, the authors
show that using such a relaxed commitment scheme within a signature scheme still leads to
the desired security. The high-level principle is the following: instead of properly binding the
tree leaves, this relaxed commitment scheme binds the height-1 nodes (the parent nodes of the
leaves) using the fact that the 2 (λ-bit) commitment digests of the two children form a 2λ-bit
commitment digest for the parent node, which prevents the prover to get collisions over those
nodes. Moreover, the authors show that the prover can have at most 2λ/ log2 λ preimages of
the leaf commitment. By counting the number of possible openings, the authors show that the
relaxed vector commitment can be opened to at most u := 2N(λ/ log 2λ)2 different witnesses.
This relaxed opening degrades the soundness of the proof system by an offset of log2 u bits. This
security loss can be compensated by increasing the scheme parameters while still benefitting
from a decreased signature size.

We did not include this optimization in MQOM v2 but we will consider it for a future update
after careful analysis of its security and adaptation to the TCitH context. We could expect a
saving of around 200 bytes in the signature size (for the first security level).

MQOM: MQ on my Mind 65

Framework TCitH VOLEitH

Statistical Batching Without (3r) With (5r) Without (3r) With (5r)

L1-gf2-short 2 852 2 804 2 950 (+3%) 2 774 (-1%)

L1-gf16-short 3 044 2 900 3 038 (-0%) 2 862 (-1%)

L1-gf256-short 3 524 3 140 3 434 (-3%) 3 082 (-2%)

L1-gf2-fast 3 204 3 132 3 326 (+4%) 3 086 (-1%)

L1-gf16-fast 3 492 3 276 3 446 (-1%) 3 206 (-2%)

L1-gf256-fast 4 212 3 636 3 986 (-6%) 3 506 (-4%)

L3-gf2-short 6 376 6 262 6 620 (+4%) 6 212 (-1%)

L3-gf16-short 6 832 6 490 6 824 (-0%) 6 416 (-1%)

L3-gf256-short 7 972 7 060 7 742 (-3%) 6 926 (-2%)

L3-gf2-fast 7 240 7 078 7 556 (+4%) 7 004 (-1%)

L3-gf16-fast 7 888 7 402 7 832 (-1%) 7 280 (-2%)

L3-gf256-fast 9 508 8 212 9 074 (-5%) 7 970 (-3%)

L5-gf2-short 11 540 11 340 11 786 (+2%) 11 050 (-3%)

L5-gf16-short 12 440 11 790 12 200 (-2%) 11 464 (-3%)

L5-gf256-short 14 340 12 740 13 810 (-4%) 12 338 (-3%)

L5-gf2-fast 12 996 12 708 13 498 (+4%) 12 506 (-2%)

L5-gf16-fast 14 292 13 356 14 056 (-2%) 13 064 (-2%)

L5-gf256-fast 17 028 14 724 16 226 (-5%) 14 242 (-3%)

Table 20: Signature sizes when using the one-tree technique, instead of correlated trees. All
the signature sizes are in bytes. The trade-off “short” relies on GGM trees with
2048 leaves, while the trade-off “fast” relies on GGM trees with 256 leaves. For all
instances, the proof-of-work is roughly of 10 bits. While τ would be larger using
TCitH than using VOLEitH, the number of the expanded bits using PRG on tree
leaves is larger using VOLEitH than using TCitH (up to a +50% overhead), because
of the mask for the consistency check.

5.3 Grinding

Together with the one-tree optimization, [BBM+24] suggests using an explicit proof-of-work to
the Fiat-Shamir hash computation of the query challenge, whihc is known as grinding [Sta21].
Together with the query challenge, the signer samples a w-bit value which should be zero, for
w a parameter of the scheme. If this value is not zero, the signer rejects the query challenge
and recompute the hash with an incremented counter, until a zero value is found. This strategy
increases the cost of hashing the last challenge by a factor 2w which translates to decreasing the
soundness error by a factor 2−w. As a consequence, one can lower the GGM tree parameters to
achieve a soundness of λ− w bits instead of λ.

We use the grinding optimization in MQOM v2. We chose the grinding parameter w in order
to decrease the number of repetitions (τ).

66 MQOM: MQ on my Mind

5.4 Symmetric primitives

For most of the symmetric primitives involved in the signature scheme, there are two possible
options to instantiate them: either we use an extendable output hash function (XOF), or we use
a block cipher. While the first version of MQOM solely relied on XOF, we changed for mainly
using a block cipher in MQOM v2 for performance reasons. Specifically, we aim to leverage the
AES hardware instructions available on modern CPUs. While the easiest choice would then
be to use AES-λ as block cipher (e.g. as counter mode for the PRG), this choice implies a
128-bit distinguisher whatever λ because of the fixed 128-bit block-size of AES. As a result, the
EUF-CMA advantage can only be upper bounded by 2−128 whatever the target security λ.

To avoid this issue, we use a block cipher with higher block size for Categories III and V,
namely Rijndael-256-256 (with truncation for λ = 192). The latter cipher also benefits from
fast implementation using AES hardware instructions. Moreover, using a cipher with a λ-bit
key-size and λ-bit block-size, we can use a (partial) fixed-key mode in the seed derivation with
a Davies-Meyer construction. This further improves the performances by saving some costly
key schedules.

MQOM: MQ on my Mind 67

6 Advantages and limitations

Bad news first, the MQOM signature scheme suffers the following limitations:

• Relatively slow: As other MPCitH based scheme, MQOM is relatively slow, with sign-
ing and verification time ranging between 2 and 14 megacycles (0.9 – 5.6 ms AMD Ryzen
Threadripper PRO 7995WX processor) for NIST security category I. This is slow com-
pared to lattice-based signatures. One of the reason is the greedy use of symmetric
cryptography.

• Quadratic growth in the security level: As other MPCitH-based signature schemes,
or, more generally, as other schemes applying the Fiat-Shamir transform to a parallelly
repeated ZK-PoK with non-negligible soundness error, MQOM suffers a quadratic growth
of the signature size. In practice, the size of MQOM signatures roughly doubles while
going from Category I to Category III and while going from Category III to Category V
as well.

On the other hand, MQOM benefits of the following advantages:

• Conservative hardness assumption: Being generic, the MPCitH approach can be
applied to any problem on does not rely on structured problems to introduce a trapdoor.
MQOM benefits this by relying on a full random instance of the MQ problem which is
believe to be a conservative hardness assumption.

• Small (public) keys: Thanks to the unstructured feature of the MQ instance, it can be
mostly derive from a random seed. Hence the public key is only composed of a λ-bit seed
and the relatively-short output y of the MQ system. The secret key additionally includes
the relatively-short input x of the MQ system (which can further be fully compressed as
the root seed of the key generation).

• Highly parallelizable: As other schemes based on the MPCitH paradigm, MQOM is
highly parallelizable. Most of the computation can be done in parallel for the τ repetitions
and computation can be further parallelized inside a repetition (arithmetic computation,
seed trees and commitments).

• Good public key + signature size: As other schemes based on the MPCitH paradigm,
MQOM achieves a good score in terms of “public key + signature size” metric compared
to other candidate post-quantum signature schemes.

• Relatively small signatures: The last generation of MPCitH-based signature schemes
in the literature (at time of writing) achieves signature sizes ranging on 2.5–5 KB (for
128-bit of security). MQOM is on the lower side of this range, with 2.8–3.6 KB. MPCitH-
based signatures achieving lower sizes are arguably based on less conservative assumptions
(e.g. recent dedicated symmetric designs). Among the MPCitH-based NIST candidates
selected for Round 2, MQOM has the smallest signatures.

• Fairly embedded friendly: For an MPCitH-based scheme, MQOM is fairly well-suited
for implementation on embedded devices. Benchmarks on Cortex-M4 demonstrate that
MQOM can be implemented with low memory requirements (under 10 KB for L1). Among
the MPCitH-based NIST candidates selected for Round 2, MQOM requires the fewest
symmetric primitive calls, and natively achieves the lowest memory footprint. Moreover,

68 MQOM: MQ on my Mind

protecting MQOM against side-channel attacks using masking is simple: it avoids costly
Arithmetic-Boolean masking conversions (common in lattice-based schemes), does not
require any divisions (even with public divisors) or Gaussian elimination (as in UOV-like
schemes).

MQOM: MQ on my Mind 69

References

[AB24] M. Albrecht and G. Bard. The M4RI Library. The M4RI Team. 2024. url: https:
//bitbucket.org/malb/m4ri (cited on page 48).

[AFG+24] C. Aguilar-Melchor, T. Feneuil, N. Gama, S. Gueron, J. Howe, D. Joseph, A.
Joux, E. Persichetti, T. H. Randrianarisoa, M. Rivain, and D. Yue. SDitH —
Syndrome Decoding in the Head. Technical report, National Institute of Standards
and Technology, 2024. available at https://csrc.nist.gov/Projects/pqc-dig-
sig/round-2-additional-signatures (cited on page 24).

[AP21] A. Adomnicai and T. Peyrin. Fixslicing AES-like ciphers. IACR TCHES, (1):402–
425, 2021. url: https://tches.iacr.org/index.php/TCHES/article/view/
8739 (cited on page 42).

[AW21] J. Alman and V. V. Williams. A refined laser method and faster matrix mul-
tiplication. In D. Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021,
pages 522–539. SIAM, 2021 (cited on page 48).

[Bar04] M. Bardet. Étude des systèmes algébriques surdéterminés. Applications aux codes
correcteurs et à la cryptographie. PhD thesis, Pierre and Marie Curie University,
Paris, France, 2004. url: https://tel.archives-ouvertes.fr/tel-00449609
(cited on page 50).

[BBD+23] C. Baum, L. Braun, C. Delpech de Saint Guilhem, M. Klooß, E. Orsini, L. Roy,
and P. Scholl. Publicly verifiable zero-knowledge and post-quantum signatures
from VOLE-in-the-head. In pages 581–615, Santa Barbara, CA, USA, 2023 (cited
on pages 2–4, 8, 61).

[BBM+24] C. Baum, W. Beullens, S. Mukherjee, E. Orsini, S. Ramacher, C. Rechberger, L.
Roy, and P. Scholl. One tree to rule them all: optimizing GGM trees and OWFs
for post-quantum signatures. In ASIACRYPT 2024, Part I, pages 463–493, 2024
(cited on pages 4, 64, 65).

[BCC+13] C. Bouillaguet, C. Cheng, T. Chou, R. Niederhagen, and B.-Y. Yang. Fast Exhaus-
tive Search for Quadratic Systems in F2 on FPGAs. In Selected Areas in Cryptog-
raphy, pages 205–222. Springer, 2013. https://eprint.iacr.org/2013/436.pdf
(cited on page 55).

[BCD24] D. Bui, K. Cong, and C. Delpech de Saint Guilhem. Improved all-but-one vec-
tor commitment with applications to post-quantum signatures. Cryptology ePrint
Archive, Report 2024/097, 2024. url: https://eprint.iacr.org/2024/097
(cited on page 63).

[Beu20] W. Beullens. Sigma protocols for MQ, PKP and SIS, and Fishy signature schemes.
In A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020, Part III, pages 183–
211, Zagreb, Croatia, 2020 (cited on page 62).

[Beu22] W. Beullens. Breaking rainbow takes a weekend on a laptop. In Y. Dodis and
T. Shrimpton, editors, Advances in Cryptology - CRYPTO 2022 - 42nd Annual
International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA,
August 15-18, 2022, Proceedings, Part II, pages 464–479. Springer, 2022. url:
https://doi.org/10.1007/978-3-031-15979-4_16 (cited on page 52).

https://bitbucket.org/malb/m4ri
https://bitbucket.org/malb/m4ri
https://csrc.nist.gov/Projects/pqc-dig-sig/round-2-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-2-additional-signatures
https://tches.iacr.org/index.php/TCHES/article/view/8739
https://tches.iacr.org/index.php/TCHES/article/view/8739
https://tel.archives-ouvertes.fr/tel-00449609
https://eprint.iacr.org/2013/436.pdf
https://eprint.iacr.org/2024/097
https://doi.org/10.1007/978-3-031-15979-4_16

70 MQOM: MQ on my Mind

[BFP09] L. Bettale, J. Faugère, and L. Perret. Hybrid approach for solving multivariate
systems over finite fields. J. Math. Cryptol., (3):177–197, 2009 (cited on page 52).

[BFP12] L. Bettale, J. Faugère, and L. Perret. Solving polynomial systems over finite fields:
improved analysis of the hybrid approach. In J. van der Hoeven and M. van Hoeij,
editors, International Symposium on Symbolic and Algebraic Computation, IS-
SAC’12, Grenoble, France - July 22 - 25, 2012, pages 67–74. ACM, 2012 (cited on
pages 52, 53).

[BFR24] R. Benadjila, T. Feneuil, and M. Rivain. MQ on my mind: post-quantum signatures
from the non-structured multivariate quadratic problem. In pages 468–485, 2024
(cited on pages 2, 47).

[BFS15] M. Bardet, J. Faugère, and B. Salvy. On the complexity of the F5 gröbner basis
algorithm. J. Symb. Comput.:49–70, 2015 (cited on page 50).

[BFS+13] M. Bardet, J. Faugère, B. Salvy, and P. Spaenlehauer. On the complexity of solving
quadratic boolean systems. J. Complexity, (1):53–75, 2013. url: https://doi.
org/10.1016/j.jco.2012.07.001 (cited on page 55).

[BGG+20] F. Boudot, P. Gaudry, A. Guillevic, N. Heninger, E. Thomé, and P. Zimmermann.
Comparing the difficulty of factorization and discrete logarithm: A 240-digit ex-
periment. In D. Micciancio and T. Ristenpart, editors, CRYPTO 2020, Part II,
pages 62–91, Santa Barbara, CA, USA, 2020 (cited on pages 51, 55).

[BKW19] A. Björklund, P. Kaski, and R. Williams. Solving systems of polynomial equations
over GF(2) by a parity-counting self-reduction. In C. Baier, I. Chatzigiannakis, P.
Flocchini, and S. Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, 26:1–
26:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. url: https://
doi.org/10.4230/LIPIcs.ICALP.2019.26 (cited on page 56).

[BMS+22] E. Bellini, R. H. Makarim, C. Sanna, and J. A. Verbel. An estimator for the
hardness of the MQ problem. In L. Batina and J. Daemen, editors, Progress in
Cryptology - AFRICACRYPT 2022: 13th International Conference on Cryptology
in Africa, AFRICACRYPT 2022, Fes, Morocco, July 18-20, 2022, Proceedings,
pages 323–347. Springer Nature Switzerland, 2022 (cited on page 47).

[Bou24] C. Bouillaguet. Algorithm xxx: evaluating a boolean polynomial on all possible
inputs. ACM Trans. Math. Softw., 2024. url: https://doi.org/10.1145/
3699957. Just Accepted (cited on page 58).

[CCN+12] C. Cheng, T. Chou, R. Niederhagen, and B. Yang. Solving quadratic equations with
XL on parallel architectures. In E. Prouff and P. Schaumont, editors, Cryptographic
Hardware and Embedded Systems - CHES 2012 - 14th International Workshop,
Leuven, Belgium, September 9-12, 2012. Proceedings, pages 356–373. Springer,
2012 (cited on pages 51, 52).

[CDG+17] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger, D.
Slamanig, and G. Zaverucha. Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In B. M. Thuraisingham, D. Evans, T. Malkin, and D.
Xu, editors, ACM CCS 2017, pages 1825–1842, Dallas, TX, USA. ACM Press,
2017 (cited on page 62).

https://doi.org/10.1016/j.jco.2012.07.001
https://doi.org/10.1016/j.jco.2012.07.001
https://doi.org/10.4230/LIPIcs.ICALP.2019.26
https://doi.org/10.4230/LIPIcs.ICALP.2019.26
https://doi.org/10.1145/3699957
https://doi.org/10.1145/3699957

MQOM: MQ on my Mind 71

[CDI05] R. Cramer, I. Damg̊ard, and Y. Ishai. Share conversion, pseudorandom secret-
sharing and applications to secure computation. In J. Kilian, editor, TCC 2005,
pages 342–362, Cambridge, MA, USA, 2005 (cited on page 8).

[CG23] A. Caminata and E. Gorla. Solving degree, last fall degree, and related invariants.
J. Symb. Comput.:322–335, 2023. url: https://doi.org/10.1016/j.jsc.2022.
05.001 (cited on page 50).

[CKP+00] N. T. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for
solving overdefined systems of multivariate polynomial equations. In B. Preneel,
editor, Advances in Cryptology - EUROCRYPT 2000, International Conference on
the Theory and Application of Cryptographic Techniques, Bruges, Belgium, May
14-18, 2000, Proceeding, pages 392–407. Springer, 2000. url: https://doi.org/
10.1007/3-540-45539-6_27 (cited on page 51).

[CLY+24] H. Cui, H. Liu, D. Yan, K. Yang, Y. Yu, and K. Zhang. ReSolveD: shorter signatures
from regular syndrome decoding and VOLE-in-the-head. In PKC 2024, Part I,
pages 229–258, 2024 (cited on page 63).

[DDV+21] J. Ding, J. Deaton, Vishakha, and B. Yang. The nested subset differential at-
tack - A practical direct attack against LUOV which forges a signature within
210 minutes. In A. Canteaut and F. Standaert, editors, Advances in Cryptology -
EUROCRYPT 2021 - 40th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021,
Proceedings, Part I, pages 329–347. Springer, 2021. url: https://doi.org/10.
1007/978-3-030-77870-5_12 (cited on page 55).

[DGP08] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear algebra over word-size prime
fields: the fflas and ffpack packages.ACM Trans. on Mathematical Software (TOMS),
(3):1–42, 2008 (cited on page 48).

[Din21a] I. Dinur. Cryptanalytic applications of the polynomial method for solving multi-
variate equation systems over GF(2). In A. Canteaut and F. Standaert, editors,
Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Zagreb, Croa-
tia, October 17-21, 2021, Proceedings, Part I, pages 374–403. Springer, 2021. url:
https://doi.org/10.1007/978-3-030-77870-5_14 (cited on page 56).

[Din21b] I. Dinur. Cryptanalytic applications of the polynomial method for solving multi-
variate equation systems over GF(2). In A. Canteaut and F.-X. Standaert, edi-
tors, EUROCRYPT 2021, Part I, pages 374–403, Zagreb, Croatia, 2021 (cited on
page 58).

[Din21c] I. Dinur. Improved algorithms for solving polynomial systems over GF(2) by mul-
tiple parity-counting. In D. Marx, editor, Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10
- 13, 2021, pages 2550–2564. SIAM, 2021. url: https://doi.org/10.1137/1.
9781611976465.151 (cited on page 56).

[EVZ+24] A. Esser, J. A. Verbel, F. Zweydinger, and E. Bellini. Sok: cryptographicestimators
- a software library for cryptographic hardness estimation. In J. Zhou, T. Q. S.
Quek, D. Gao, and A. A. Cárdenas, editors, Proceedings of the 19th ACM Asia
Conference on Computer and Communications Security, ASIA CCS 2024, Singa-

https://doi.org/10.1016/j.jsc.2022.05.001
https://doi.org/10.1016/j.jsc.2022.05.001
https://doi.org/10.1007/3-540-45539-6_27
https://doi.org/10.1007/3-540-45539-6_27
https://doi.org/10.1007/978-3-030-77870-5_12
https://doi.org/10.1007/978-3-030-77870-5_12
https://doi.org/10.1007/978-3-030-77870-5_14
https://doi.org/10.1137/1.9781611976465.151
https://doi.org/10.1137/1.9781611976465.151

72 MQOM: MQ on my Mind

pore, July 1-5, 2024. ACM, 2024. url: https://doi.org/10.1145/3634737.
3645007 (cited on page 47).

[FK24] H. Furue and M. Kudo. Polynomial XL: A variant of the XL algorithm using
macaulay matrices over polynomial rings. In M. O. Saarinen and D. Smith-Tone,
editors, Post-Quantum Cryptography - 15th International Workshop, PQCrypto
2024, Oxford, UK, June 12-14, 2024, Proceedings, Part II, pages 109–143. Springer,
2024. url: https://doi.org/10.1007/978- 3- 031- 62746- 0_6 (cited on
page 53).

[FR23a] T. Feneuil and M. Rivain. MQOM: MQ on my Mind – Algorithm Specifications
and Supporting Documentation. Version 1.0 – 31st May 2023, 2023. https://
mqom.org/docs/mqom-v1.0.pdf (cited on pages 2, 47).

[FR23b] T. Feneuil and M. Rivain. Threshold computation in the head: improved framework
for post-quantum signatures and zero-knowledge arguments. Cryptology ePrint
Archive, Report 2023/1573, 2023. url: https://eprint.iacr.org/2023/1573
(cited on pages 2–4, 8, 9, 61, 62).

[FR23c] T. Feneuil and M. Rivain. Threshold linear secret sharing to the rescue of MPC-
in-the-head. In ASIACRYPT 2023, Part I, pages 441–473, 2023 (cited on page 3).

[GKW+20] C. Guo, J. Katz, X. Wang, and Y. Yu. Efficient and secure multiparty computation
from fixed-key block ciphers. In 2020 IEEE Symposium on Security and Privacy,
pages 825–841, San Francisco, CA, USA. IEEE Computer Society Press, 2020
(cited on page 13).

[GMO16] I. Giacomelli, J. Madsen, and C. Orlandi. ZKBoo: faster zero-knowledge for Boolean
circuits. In T. Holz and S. Savage, editors, USENIX Security 2016, pages 1069–
1083, Austin, TX, USA. USENIX Association, 2016 (cited on page 62).

[GYW+23] X. Guo, K. Yang, X. Wang, W. Zhang, X. Xie, J. Zhang, and Z. Liu. Half-tree:
halving the cost of tree expansion in COT and DPF. In C. Hazay and M. Stam,
editors, EUROCRYPT 2023, Part I, pages 330–362, Lyon, France, 2023 (cited on
pages 9, 63).

[HJ24] J. Huth and A. Joux. MPC in the head using the subfield bilinear collision problem.
In CRYPTO 2024, Part I, pages 39–70, Santa Barbara, CA, USA, 2024 (cited on
page 63).

[IKO+07] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure
multiparty computation. In D. S. Johnson and U. Feige, editors, 39th ACM STOC,
pages 21–30, San Diego, CA, USA. ACM Press, 2007 (cited on page 2).

[JV17] A. Joux and V. Vitse. A Crossbred Algorithm for Solving Boolean Polynomial
Systems. In NuTMiC, pages 3–21. Springer, 2017. https://eprint.iacr.org/
2017/372.pdf (cited on page 55).

[KKW18] J. Katz, V. Kolesnikov, and X. Wang. Improved non-interactive zero knowledge
with applications to post-quantum signatures. In D. Lie, M. Mannan, M. Backes,
and X. Wang, editors, ACM CCS 2018, pages 525–537, Toronto, ON, Canada.
ACM Press, 2018 (cited on pages 2, 8, 62).

[KLS24] S. Kim, B. Lee, and M. Son. Relaxed vector commitment for shorter signatures.
Cryptology ePrint Archive, Report 2024/1004, 2024. url: https://eprint.iacr.
org/2024/1004 (cited on pages 47, 63, 64).

https://doi.org/10.1145/3634737.3645007
https://doi.org/10.1145/3634737.3645007
https://doi.org/10.1007/978-3-031-62746-0_6
https://mqom.org/docs/mqom-v1.0.pdf
https://mqom.org/docs/mqom-v1.0.pdf
https://eprint.iacr.org/2023/1573
https://eprint.iacr.org/2017/372.pdf
https://eprint.iacr.org/2017/372.pdf
https://eprint.iacr.org/2024/1004
https://eprint.iacr.org/2024/1004

MQOM: MQ on my Mind 73

[KPR+] M. J. Kannwischer, R. Petri, J. Rijneveld, P. Schwabe, and K. Stoffelen. PQM4:
post-quantum crypto library for the ARM Cortex-M4. https://github.com/
mupq/pqm4 (cited on page 42).

[Laz83] D. Lazard. Gröbner-bases, gaussian elimination and resolution of systems of alge-
braic equations. In J. A. van Hulzen, editor, EUROCAL, pages 146–156. Springer,
1983. isbn: 3-540-12868-9 (cited on pages 49, 51).

[LPT+17] D. Lokshtanov, R. Paturi, S. Tamaki, R. R. Williams, and H. Yu. Beating brute
force for systems of polynomial equations over finite fields. In P. N. Klein, ed-
itor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 2190–2202. SIAM, 2017. isbn: 978-1-61197-478-2. url: https://doi.org/
10.1137/1.9781611974782.143 (cited on page 56).

[MPG13] G. Macario-Rat, J. Plût, and H. Gilbert. New insight into the isomorphism of
polynomial problem IP1S and its use in cryptography. In K. Sako and P. Sarkar,
editors, ASIACRYPT 2013, Part I, pages 117–133, Bengalore, India, 2013 (cited
on page 57).

[NIS22] N. I. of Standards and T. (NIST). Call for Additional Digital Signature Schemes
for the Post-Quantum Cryptography Standardization Process, 2022. https://
csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-

proposals-dig-sig-sept-2022.pdf (cited on page 2).

[NNY18] R. Niederhagen, K. Ning, and B. Yang. Implementing joux-vitse’s crossbred algo-
rithm for solving MQ systems over GF(2) on gpus. In T. Lange and R. Steinwandt,
editors, Post-Quantum Cryptography - 9th International Conference, PQCrypto
2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings, pages 121–141.
Springer, 2018. url: https://doi.org/10.1007/978-3-319-79063-3_6 (cited
on page 56).

[Ope] OpenBenchmarking.org. https://openbenchmarking.org/processors (cited on
page 37).

[Roy22] L. Roy. SoftSpokenOT: quieter OT extension from small-field silent VOLE in the
minicrypt model. In Y. Dodis and T. Shrimpton, editors, CRYPTO 2022, Part I,
pages 657–687, Santa Barbara, CA, USA, 2022 (cited on pages 8, 24).

[SS16] P. Schwabe and K. Stoffelen. All the AES you need on Cortex-M3 and M4. In
R. Avanzi and H. M. Heys, editors, SAC 2016, pages 180–194, St. John’s, NL,
Canada, 2016 (cited on page 42).

[Sta21] StarkWare. ethSTARK documentation. Cryptology ePrint Archive, Report 2021/582,
2021. url: https://eprint.iacr.org/2021/582 (cited on pages 12, 65).

[SZ22] A. Szepieniec and Y. Zhang. Polynomial IOPs for linear algebra relations. In G.
Hanaoka, J. Shikata, and Y. Watanabe, editors, PKC 2022, Part I, pages 523–552,
Virtual Event, 2022 (cited on page 3).

[Tha23] J. Thaler. Proofs, Arguments, and Zero-Knowledge. 2023. https://people.cs.
georgetown.edu/jthaler/ProofsArgsAndZK.pdf (cited on page 3).

[Wik] Wikipedia. AVX-512. Note: Intel fusing off AVX-512 support on Alder Lake.
https://en.wikipedia.org/wiki/AVX- 512#endnote_adl- avx512- note

(cited on page 37).

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://doi.org/10.1137/1.9781611974782.143
https://doi.org/10.1137/1.9781611974782.143
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://doi.org/10.1007/978-3-319-79063-3_6
https://openbenchmarking.org/processors
https://eprint.iacr.org/2021/582
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://en.wikipedia.org/wiki/AVX-512#endnote_adl-avx512-note

74 MQOM: MQ on my Mind

[YC04] B. Yang and J. Chen. Theoretical analysis of XL over small fields. In H. Wang,
J. Pieprzyk, and V. Varadharajan, editors, Information Security and Privacy: 9th
Australasian Conference, ACISP 2004, Sydney, Australia, July 13-15, 2004. Pro-
ceedings, pages 277–288. Springer, 2004. url: https://doi.org/10.1007/978-
3-540-27800-9_24 (cited on page 55).

[YSW+21] K. Yang, P. Sarkar, C. Weng, and X. Wang. QuickSilver: efficient and affordable
zero-knowledge proofs for circuits and polynomials over any field. In G. Vigna
and E. Shi, editors, ACM CCS 2021, pages 2986–3001, Virtual Event, Republic of
Korea. ACM Press, 2021 (cited on page 4).

https://doi.org/10.1007/978-3-540-27800-9_24
https://doi.org/10.1007/978-3-540-27800-9_24

	Introduction
	Description of the MQOM signature scheme
	Overview
	MQ problem
	MQOM polynomial IOP
	Line commitment scheme
	Compilation to signature scheme

	Notations
	Data representation
	Main algorithms
	Key generation
	Signing
	Verification

	Subroutines
	Arithmetic routines
	Batch line commitment routines
	GGM tree routines
	Seed processing routines
	Symmetric primitives
	Bit manipulation

	MQOM instances
	Parameter selection
	Key and signature sizes
	Proposed instances
	Benchmarks
	Benchmarks on x86 platforms
	Benchmarks on embedded platforms

	Security
	Unforgeability
	Attacks against MQ instances
	Tools and building blocks
	Solving polynomial systems over ``large'' finite fields
	Special case of Boolean systems

	Design choices
	Threshold-Computation-in-the-Head
	GGM trees
	Grinding
	Symmetric primitives

	Advantages and limitations

